Gene silencing in mammals by small interfering RNAs (original) (raw)

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).The first paper to describe RNAi. Soon after, RNAi became a standard means by which to analyse gene function in C. elegans.
    Article CAS PubMed Google Scholar
  2. Vaucheret, H., Beclin, C. & Fagard, M. Post-transcriptional gene silencing in plants. J. Cell Sci. 114, 3083–3091 (2001).
    CAS PubMed Google Scholar
  3. Baulcombe, D. RNA silencing. Curr. Biol. 12, R82–R84 (2002).
    Article CAS PubMed Google Scholar
  4. Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494–2497 (2000).
    Article CAS PubMed Google Scholar
  5. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).The authors present the first evidence for the key mediator of RNAi: the small interfering RNAs, now known as siRNAs. After this report, the presence of siRNAs in silenced tissue was considered to be the hallmark of active RNAi processes.
    Article CAS PubMed Google Scholar
  6. Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).This paper helped to define the mechanism for RNAi. The authors showed that siRNAs can be produced from long dsRNAs, and that the siRNAs direct targeted mRNA cleavage.
    Article CAS PubMed Google Scholar
  7. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).The authors describe the enzyme for siRNA production, the RNase III enzyme, Dicer.
    Article CAS PubMed Google Scholar
  8. Parrish, S., Fleenor, J., Xu, S., Mello, C. & Fire, A. Functional anatomy of a dsRNA trigger. Differential requirement for the two trigger strands in RNA interference. Mol. Cell 6, 1077–1087 (2000).
    Article CAS PubMed Google Scholar
  9. Yang, D., Lu, H. & Erickson, J. W. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191–1200 (2000).
    Article CAS PubMed Google Scholar
  10. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).
    Article CAS PubMed Google Scholar
  11. Elbashir, S. M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  12. Donze, O. & Picard, D. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res. 30, E46 (2002).
    Article PubMed PubMed Central Google Scholar
  13. Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  14. Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J. & Conklin, D. S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  15. Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).
    Article CAS PubMed Google Scholar
  16. Yang, D. et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 99, 9942–9947 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  17. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).The identification of the first miRNA.
    Article CAS PubMed Google Scholar
  18. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).The identification of let-7 as a second miRNA in the heterochronic gene pathway indicated that many more miRNAs might be found.
    Article CAS PubMed Google Scholar
  19. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).
    Article CAS PubMed Google Scholar
  20. Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637–646 (1997).
    Article CAS PubMed Google Scholar
  21. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).
    Article CAS PubMed Google Scholar
  22. Rougvie, A. E. Control of developmental timing in animals. Nature Rev. Genet. 2, 690–701 (2001).
    Article CAS PubMed Google Scholar
  23. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).
    Article CAS PubMed Google Scholar
  24. Sharp, P. A. RNA interference—2001. Genes Dev. 15, 485–490 (2001).
    Article CAS PubMed Google Scholar
  25. Moss, E. G. Non-coding RNAs: lightning strikes twice. Curr. Biol. 10, R436–R439 (2000).
    Article CAS PubMed Google Scholar
  26. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).This work provided a link between RNAi and the heterochronic gene pathway by showing that siRNAs and stRNAs are produced by the same molecules.
    Article CAS PubMed Google Scholar
  27. Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  28. Bass, B. L. Double-stranded RNA as a template for gene silencing. Cell 101, 235–238 (2000).
    Article CAS PubMed Google Scholar
  29. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
    Article CAS PubMed Google Scholar
  30. Knight, S. W. & Bass, B. L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in C. elegans. Science 293, 2269–2271 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  31. Williams, R. W. & Rubin, G. M. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl Acad. Sci. USA 99, 6889–6894 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  32. Morel, J. B. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  33. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).
    Article CAS PubMed Google Scholar
  34. Chakravarty, I., Bagchi, M. K., Roy, R., Banerjee, A. C. & Gupta, N. K. Protein synthesis in rabbit reticulocytes. Purification and properties of an Mr 80,000 polypeptide (Co-eIF-2A80) with Co-eIF-2A activity. J. Biol. Chem. 260, 6945–6949 (1985).
    CAS PubMed Google Scholar
  35. Dasgupta, A. et al. Protein synthesis in rabbit reticulocytes. XXI. Purification and properties of a protein factor (Co-EIF-1) which stimulates Met-tRNAf binding to EIF-1. J. Biol. Chem. 253, 6054–6059 (1978).
    CAS PubMed Google Scholar
  36. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).
    Article CAS PubMed Google Scholar
  37. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).Together with references 38 and 39 , these papers describe the cornucopia of miRNAs.
    Article CAS PubMed Google Scholar
  38. Lau, N. C., Lim le, E. P., Weinstein, E. G. & Bartel da, V. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).
    Article CAS PubMed Google Scholar
  39. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).
    Article CAS PubMed Google Scholar
  40. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).
    Article CAS PubMed Google Scholar
  41. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  42. Llave, C., Kasschau, K. D., Maggie, A. R. & Carrington, J. C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  43. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).The authors predict that miRNAs in plants might regulate genes in a manner similar to that by siRNAs. Several of their predicted targets map to open reading frames.
    Article CAS PubMed Google Scholar
  44. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  45. Fischer, U., Liu, Q. & Dreyfuss, G. The SMN–SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90, 1023–1029 (1997).
    Article CAS PubMed Google Scholar
  46. Jones, K. W. et al. Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J. Biol. Chem. 276, 38645–38651 (2001).
    Article CAS PubMed Google Scholar
  47. Meister, G., Buhler, D., Pillai, R., Lottspeich, F. & Fischer, U. A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nature Cell Biol. 3, 945–949 (2001).
    Article CAS PubMed Google Scholar
  48. Mourelatos, Z., Abel, L., Yong, J., Kataoka, N. & Dreyfuss, G. SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J. 20, 5443–5452 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  49. Pellizzoni, L., Baccon, J., Charroux, B. & Dreyfuss, G. The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr. Biol. 11, 1079–1088 (2001).
    Article CAS PubMed Google Scholar
  50. Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M. & Dreyfuss, G. A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152, 75–85 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  51. Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 1 August 2002; [epub ahead of print].
  52. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).The first description of siRNA use in mammalian cell cultures. A wave of siRNA use in mammalian cells soon followed this key publication.
    Article CAS PubMed Google Scholar
  53. McManus, M. T., Haines, B. B., Chen, J. & Sharp, P. A. siRNA-mediated gene silencing in T-cells. J. Immunol. (in the press).
  54. Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  55. Jacque, J. M., Triques, K. & Stevenson, M. Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438 (2002).
    Article CAS PubMed Google Scholar
  56. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 (1999).
    Article CAS PubMed Google Scholar
  57. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543–553 (2000).
    Article CAS PubMed Google Scholar
  58. Smardon, A. et al. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr. Biol. 10, 169–178 (2000).
    Article CAS PubMed Google Scholar
  59. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).
    Article CAS PubMed Google Scholar
  60. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).
    CAS PubMed Google Scholar
  61. Elbashir, S. M., Harborth, J., Weber, K. & Tuschl, T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213 (2002).
    Article CAS PubMed Google Scholar
  62. Caplen, N. J., Fleenor, J., Fire, A. & Morgan, R. A. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105 (2000).
    Article CAS PubMed Google Scholar
  63. Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757–1766 (2002). http://www.mpibpc.gusdg.de/abteilungen/100/105/siRNA.html
    Article CAS PubMed PubMed Central Google Scholar
  64. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  65. Tuschl, T. The siRNA User Guide 2001. www.mpibpc.gwdg.de/abteilungen/100/105/sirna.html
    Google Scholar
  66. Novina, C. D. et al. siRNA-directed inhibition of HIV-1 infection. Nature Med. 8, 681–686 (2002).
    Article CAS PubMed Google Scholar
  67. Lee, N. S. et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002).
    Article CAS Google Scholar
  68. Scherr, M. et al. Detection of antisense and ribozyme accessible sites on native mRNAs: application to NCOA3 mRNA. Mol. Ther. 4, 454–460 (2001).
    Article CAS PubMed Google Scholar
  69. Scherr, M. & Rossi, J. J. Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res. 26, 5079–5085 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  70. Waterhouse, P. M., Wang, M. B. & Lough, T. Gene silencing as an adaptive defence against viruses. Nature 411, 834–842 (2001).
    Article CAS PubMed Google Scholar
  71. Bitko, V. & Barik, S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild-type negative-strand RNA viruses. BMC Microbiol. 1, 34 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  72. Gitlin, L., Karelsky, S. & Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434 (2002).
    Article CAS PubMed Google Scholar
  73. Hu, W. H., Myers, C. P., Kilver, J. M., Pfaff, S. L. & Bushman, F. D. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol. 12, 1301 (2002).
    Article CAS PubMed Google Scholar
  74. Coburn, G. A. & Cullen, B. R. Potent and specific inhibition of HIV-1 replication using RNA interference. J. Virol. 76, 9225–9231 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  75. McCaffrey, A. P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).
    Article CAS PubMed Google Scholar
  76. Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. & Herweijer, H. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genet. 32, 107–108 (2002).
    Article CAS PubMed Google Scholar
  77. Li, H., Xiang, L. W. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1323 (2002).
    Article CAS PubMed Google Scholar
  78. Zhang, K. & Nicholson, A. W. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc. Natl Acad. Sci. USA 94, 13437–13441 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  79. Wu, H. et al. A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III. EMBO J. 20, 7240–7249 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  80. Chanfreau, G., Buckle, M. & Jacquier, A. Recognition of a conserved class of RNA tetraloops by Saccharomyces cerevisiae RNase III. Proc. Natl Acad. Sci. USA 97, 3142–3147 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  81. Lai, E. C., Burks, C. & Posakony, J. W. The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. Development 125, 4077–4088 (1998).
    CAS PubMed Google Scholar
  82. Lai, E. C. & Posakony, J. W. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split complex gene expression. Development 124, 4847–4856 (1997).
    CAS PubMed Google Scholar
  83. Kennerdell, J. R. & Carthew, R. W. Heritable gene silencing in Drosophila using double-stranded RNA. Nature Biotechnol. 18, 896–898 (2000).
    Article CAS Google Scholar
  84. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000).
    Article CAS PubMed Google Scholar
  85. Chuang, C. F. & Meyerowitz, E. M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 97, 4985–4990 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  86. Smith, N. A. et al. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320 (2000).
    Article CAS PubMed Google Scholar
  87. Paddison, P. J., Caudy, A. A. & Hannon, G. J. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl Acad. Sci. USA 99, 1443–1448 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  88. Svoboda, P., Stein, P. & Schultz, R. M. RNAi in mouse oocytes and preimplantation embryos: effectiveness of hairpin dsRNA. Biochem. Biophys. Res. Commun. 287, 1099–1104 (2001).
    Article CAS PubMed Google Scholar
  89. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).
    Article CAS PubMed Google Scholar
  90. Paul, C. P., Good, P. D., Winer, I. & Engelke, D. R. Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20, 505–508 (2002).
    Article CAS Google Scholar
  91. Miyagishi, M. & Taira, K. U6 promoter driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol. 20, 497–500 (2002).
    Article CAS Google Scholar
  92. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 99, 5515–5520 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  93. Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1–20 (2002).
    Article Google Scholar
  94. McManus, M. T., Petersen, C. P., Haines, B. B., Chen, J. & Sharp, P. A. Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  95. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).
    Article CAS PubMed Google Scholar
  96. Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D. & Benfey, P. N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119 (1999).
    Article CAS PubMed Google Scholar
  97. Gil, J. & Esteban, M. Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114 (2000).
    Article CAS PubMed Google Scholar
  98. Kumar, M. & Carmichael, G. G. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1415–1434 (1998).
    CAS PubMed PubMed Central Google Scholar
  99. Tabara et al. The rde-1 gene, RNA interface and transposon silencing in C.elegans. Cell 99, 123–132 (2002).
    Article Google Scholar
  100. Ohta, T. et al. Characterization of CEP135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol. 156, 87–99 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  101. Zhihong, C., Indjeian, V. B., McManus, M. T., Wang, L. & Dynlacht, B. D. A novel, cell cycle-dependent centriolar CDK substrate regulates centrosome duplication in human cells. Dev. Cell 2, 1–16 (2002).
    Article Google Scholar
  102. Moskalenko, S. et al. The exocyst is a Ral effector complex. Nature Cell Biol. 4, 66–72 (2002).
    Article CAS PubMed Google Scholar
  103. Kisielow, M., Kleiner, S., Nagasawa, M., Faisal, A. & Nagamine, Y. Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem. J. 363, 1–5 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  104. Stucke, V. M., Sillje, H. H., Arnaud, L. & Nigg, E. A. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 21, 1723–1732 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  105. Wu, F., Yan, W., Pan, J., Morser, J. & Wu, Q. Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes. J. Biol. Chem. 277, 16900–16905 (2002).
    Article CAS PubMed Google Scholar
  106. Bai, X. et al. Biosynthesis of the linkage region of glycosaminoglycans: cloning and activity of galactosyltransferase II, the sixth member of the beta 1,3-galactosyltransferase family (beta 3GalT6). J. Biol. Chem. 276, 48189–48195 (2001).
    Article CAS PubMed Google Scholar
  107. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).
    Article CAS PubMed Google Scholar
  108. Mailand, N. et al. Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation. _Nature Cell Biol._4, 318–322 (2002).
  109. Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).
    Article CAS PubMed PubMed Central Google Scholar

Download references