It takes two to tango: regulation of G proteins by dimerization (original) (raw)

References

  1. Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE 250, 1–31 (2004).
    Google Scholar
  2. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).
    Article CAS PubMed Google Scholar
  3. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).
    Article PubMed Google Scholar
  4. Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J Mol. Biol. 317, 41–72 (2002).
    Article CAS PubMed Google Scholar
  5. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).
    Article CAS PubMed Google Scholar
  6. Scheffzek, K. & Ahmadian, M. GTPase activating proteins: structural and functional insights 18 years after discovery. Cell. Mol. Life Sci. 62, 3014–3038 (2005).
    Article CAS PubMed Google Scholar
  7. Scrima, A. & Wittinghofer, A. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J. 25, 2940–2951 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  8. Moser, C., Mol., O., Goody, R. S. & Sinning, I. The signal recognition particle receptor of Escherichia coli (Ftsy) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl Acad. Sci. USA 94, 11339–11344 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  9. Gasper, R., Scrima, A. & Wittinghofer, A. Structural insights into HypB, a GTP-binding protein that regulates metal binding. J Biol.Chem. 281, 27492–27502 (2006).
    Article CAS PubMed Google Scholar
  10. Wandinger, S. K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J Biol.Chem. 283, 18473–18477 (2008).
    Article CAS PubMed Google Scholar
  11. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–R685 (1997).
    Article CAS PubMed Google Scholar
  12. Ghosh, A., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature 440, 101–104 (2006).
    Article CAS PubMed Google Scholar
  13. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. & Rees, D. C. Structure of ADP˙AIF4−-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997).
    Article CAS PubMed Google Scholar
  14. Wallas, T. R., Smith, M. D., Sanchez-Nieto, S. & Schnell, D. J. The roles of Toc34 and Toc75 in targeting the Toc159 preprotein receptor to chloroplasts. J Biol.Chem. 278, 44289–44297 (2003).
    Article CAS PubMed Google Scholar
  15. Oreb, M., Tews, I. & Schleiff, E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol. 18, 19–27 (2008).
    Article CAS PubMed Google Scholar
  16. Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).
    Article CAS PubMed Google Scholar
  17. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  18. Connolly, T. & Gilmore, R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610 (1989).
    Article CAS PubMed Google Scholar
  19. Focia, P. J., Gawronski-Salerno, J., Coon, J. S. & Freymann, D. M. Structure of a GDP: AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of peripheral nucleotide interaction site. J Mol.Biol. 360, 631–643 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  20. Shan, S. O., Stroud, R. M. & Walter, P. Mechanism of association and reciprocal activation of two GTPases. PLoS. Biol. 2, e320 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  21. Zhang, X., Schaffitzel, C., Ban, N. & Shan, S. O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl Acad. Sci. USA 106, 1754–1759 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  22. Neher, S. B., Bradshaw, N., Floor, S. N., Gross, J. D. & Walter, P. SRP RNA controls a conformational switch regulating the SRP–SRP receptor interaction. Nature Struct. Mol. Biol. 15, 916–923 (2008).
    Article CAS Google Scholar
  23. Zhang, X., Kung, S. & Shan, S. O. Demonstration of a multistep mechanism for assembly of the SRP × SRP receptor complex: implications for the catalytic role of SRP RNA. J Mol.Biol. 381, 581–593 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  24. Egea, P. F., Stroud, R. M. & Walter, P. Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct.Biol. 15, 213–220 (2005).
    Article CAS PubMed Google Scholar
  25. Versele, M. & Thorner, J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol. 15, 414–424 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  26. Barral, Y. & Kinoshita, M. Structural insights shed light onto septin assemblies and function. Curr. Opin. Cell Biol. 20, 12–18 (2008).
    Article CAS PubMed Google Scholar
  27. Farkasovsky, M., Herter, P., Voss, B. & Wittinghofer, A. Nucleotide binding and filament assembly of recombinant yeast septin complexes. Biol. Chem. 386, 643–656 (2005).
    Article CAS PubMed Google Scholar
  28. Frazier, J. A. et al. Polymerization of purified yeast septins — evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737–749 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  29. Sheffield, P. J. et al. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J Biol.Chem. 278, 3483–3488 (2003).
    Article CAS PubMed Google Scholar
  30. Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature 449, 311–315 (2007).
    Article CAS PubMed Google Scholar
  31. Huang, Y. W., Surka, M. C., Reynaud, D., Pace-Asciak, C. & Trimble, W. S. GTP binding and hydrolysis kinetics of human septin 2. FEBS J. 273, 3248–3260 (2006).
    Article CAS PubMed Google Scholar
  32. Mitchison, T. J. & Field, C. M. Cytoskeleton: what does GTP do for septins? Curr. Biol. 12, R788–R790 (2002).
    Article CAS PubMed Google Scholar
  33. Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell 5, 841–851 (2000).
    Article CAS PubMed Google Scholar
  34. Kessler, F. & Schnell, D. J. The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids. Traffic 7, 248–257 (2006).
    Article CAS PubMed Google Scholar
  35. Schleiff, E., Jelic, M. & Soll, J. A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc. Natl Acad. Sci. USA 100, 4604–4609 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  36. Kessler, F., Blobel, G., Patel, H. A. & Schnell, D. J. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266, 1035–1039 (1994).
    Article CAS PubMed Google Scholar
  37. Hirsch, S., Muckel, E., Heemeyer, F., von Heijne, G. & Soll, J. A receptor component of the chloroplast protein translocation machinery. Science 266, 1989–1992 (1994).
    Article CAS PubMed Google Scholar
  38. Sun, Y. J. et al. Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nature Struct. Biol. 9, 95–100 (2002).
    Article CAS PubMed Google Scholar
  39. Koenig, P. et al. The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures. Structure 16, 585–596 (2008).
    Article CAS PubMed Google Scholar
  40. Koenig, P. et al. On the significance of Toc-GTPase homodimers. J Biol.Chem. 283, 23104–23112 (2008).
    Article CAS PubMed Google Scholar
  41. Yeh, Y. H. et al. Dimerization is important for the GTPase activity of chloroplast translocon components at Toc33 and psToc159. J Biol.Chem. 282, 13845–13853 (2007).
    Article CAS PubMed Google Scholar
  42. Reddick, L. E., Vaughn, M. D., Wright, S. J., Campbell, I. M. & Bruce, B. D. In vitro comparative kinetic analysis of the chloroplast Toc GTPases. J. Biol. Chem. 282, 11410–11426 (2007).
    Article CAS PubMed Google Scholar
  43. Ertel, F. et al. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J Biol. Chem. 280, 28281–28289 (2005).
    Article CAS PubMed Google Scholar
  44. Smith, M. D., Hiltbrunner, A., Kessler, F. & Schnell, D. J. The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J. Cell Biol. 159, 833–843 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  45. Praefcke, G. J. K. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol. 5, 133–147 (2004).
    Article CAS Google Scholar
  46. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).
    Article CAS PubMed Google Scholar
  47. Niemann, H. H., Knetsch, M. L. W., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20, 5813–5821 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  48. Reubold, T. F. et al. Crystal structure of the GTPase domain of rat dynamin 1. Proc. Natl Acad. Sci. USA 102, 13093–13098 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  49. Low, H. H. & Lowe, J. A bacterial dynamin-like protein. Nature 444, 766–769 (2006).
    Article CAS PubMed Google Scholar
  50. Prakash, B., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403, 567–571 (2000).
    Article CAS PubMed Google Scholar
  51. Schwemmle, M. & Staeheli, P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J Biol. Chem. 269, 11299–11305 (1994).
    CAS PubMed Google Scholar
  52. Prakash, B., Renault, L., Praefcke, G. J. K., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J. 19, 4555–4564 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  53. Decoster, E., Vassal, A. & Faye, G. MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. J Mol. Biol. 232, 79–88 (1993).
    Article CAS PubMed Google Scholar
  54. Colby, G., Tu, M. & Tzagoloff, A. Mto1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol. Chem. 273, 27945–27952 (1998).
    Article CAS PubMed Google Scholar
  55. Li, X. M., Li, R. H., Lin, X. H. & Guan, M. X. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12S rRNA A1555G mutation. J. Biol. Chem. 277, 27256–27264 (2002).
    Article CAS PubMed Google Scholar
  56. Suzuki, T., Suzuki, T., Wada, T., Saigo, K. & Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21, 6581–6589 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  57. Scrima, A., Vetter, I. R., Armengod, M. E. & Wittinghofer, A. The structure of the TrmE GTP-binding protein and its implications for tRNA modification. EMBO J. 24, 23–33 (2005).
    Article CAS PubMed Google Scholar
  58. Yim, L. et al. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function. J Biol. Chem. 278, 28378–28387 (2003).
    Article CAS PubMed Google Scholar
  59. Meyer, S., Scrima, A., Versees, W. & Wittinghofer, A. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. J Mol. Biol. 380, 532–547 (2008).
    Article CAS PubMed Google Scholar
  60. Goldberg, J. M., Bosgraaf, L., Van Haastert, P. J. M. & Smith, J. L. Identification of four candidate cGMP targets in Dictylostelium. Proc. Natl Acad. Sci. USA 99, 6749–6754 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  61. Bosgraaf, L. & Van Haastert, P. J. Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys. Acta 1643, 5–10 (2003).
    Article CAS PubMed Google Scholar
  62. Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).
    Article CAS PubMed Google Scholar
  63. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleiomorphic pathology. Neuron 44, 601–607 (2004).
    Article CAS PubMed Google Scholar
  64. Smith, W. W. et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neurosci. 9, 1231–1233 (2006).
    Article CAS PubMed Google Scholar
  65. Korr, D. et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell. Signal. 18, 910–920 (2006).
    Article CAS PubMed Google Scholar
  66. Lewis, P. A. et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res. Commun. 357, 1668–1671 (2007).
    Article CAS Google Scholar
  67. West, A. B. et al. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol. Genet. 16, 223–232 (2007).
    Article CAS PubMed Google Scholar
  68. Greggio, E. et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J. Neurochem. 102, 93–102 (2007).
    Article CAS PubMed Google Scholar
  69. Ito, G. et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 46, 1380–1388 (2007).
    Article CAS PubMed Google Scholar
  70. Gotthardt, K., Weyand, M., Kortholt, A., Van Haastert, P. J. & Wittinghofer, A. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J. 27, 2239–2249 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  71. Deng, J. et al. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc. Natl Acad. Sci. USA 105, 1499–1504 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  72. Jaleel, M. et al. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem. J. 405, 307–317 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  73. Bickford, L. C., Mossessova, E. & Goldberg, J. A structural view of the COPII vesicle coat. Curr Opin Struct. Biol. 14, 147–153 (2004).
    Article CAS PubMed Google Scholar
  74. Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 angstrom. Nature 409, 1071–1077 (2001).
    Article CAS PubMed Google Scholar
  75. Scrima, A., Thomas, C., Deaconescu, D. & Wittinghofer, A. The Rap–RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues. EMBO J. 27, 1145–1153 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  76. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α˙GDP˙ AIF−4 . Nature 372, 276–279 (1994).
    Article CAS PubMed Google Scholar
  77. Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).
    Article CAS PubMed Google Scholar
  78. Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115–117 (1996).
    Article CAS PubMed Google Scholar
  79. Pan, X. J., Eathiraj, S., Munson, M. & Lambright, D. G. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442, 303–306 (2006).
    Article CAS PubMed Google Scholar
  80. Gremer, L., Gilsbach, B., Ahmadian, M. R. & Wittinghofer, A. Fluoride complexes of oncogenic Ras mutants to study the Ras–RasGap interaction. Biol. Chem. 389, 1163–1171 (2008).
    Article CAS PubMed Google Scholar
  81. Tesmer, J. J. G., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4− activated Giα1: stabilization of the transition state or GTP hydrolysis. Cell 89, 251–261 (1997).
    Article CAS PubMed Google Scholar
  82. Veltel, S., Gasper, R., Eisenacher, E. & Wittinghofer, A. The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nature Struct. Mol. Biol. 15, 373–380 (2008).
    Article CAS Google Scholar
  83. Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003).
    Article CAS PubMed Google Scholar
  84. Goldberg, J. Structural and functional analysis of the ARF1–ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96, 893–902 (1999).
    Article CAS PubMed Google Scholar
  85. Lutz, S. et al. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol. Microbiol. 5, 123–135 (1991).
    Article CAS PubMed Google Scholar
  86. Maier, T., Lottspeich, F. & Bock, A. GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J. Biochem. 230, 133–138 (1995).
    Article CAS PubMed Google Scholar
  87. Maier, T., Jacobi, A., Sauter, M. & Bock, A. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J. Bacteriol. 175, 630–635 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  88. Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer—a conserved biological switch. EMBO J. 24, 270–282 (2005).
    Article CAS PubMed PubMed Central Google Scholar

Download references