It takes two to tango: regulation of G proteins by dimerization (original) (raw)
References
Colicelli, J. Human RAS superfamily proteins and related GTPases. Sci. STKE250, 1–31 (2004). Google Scholar
Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science294, 1299–1304 (2001). ArticleCASPubMed Google Scholar
Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci.15, 430–434 (1990). ArticlePubMed Google Scholar
Leipe, D. D., Wolf, Y. I., Koonin, E. V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J Mol. Biol.317, 41–72 (2002). ArticleCASPubMed Google Scholar
Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell129, 865–877 (2007). ArticleCASPubMed Google Scholar
Scheffzek, K. & Ahmadian, M. GTPase activating proteins: structural and functional insights 18 years after discovery. Cell. Mol. Life Sci.62, 3014–3038 (2005). ArticleCASPubMed Google Scholar
Scrima, A. & Wittinghofer, A. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J.25, 2940–2951 (2006). ArticleCASPubMedPubMed Central Google Scholar
Moser, C., Mol., O., Goody, R. S. & Sinning, I. The signal recognition particle receptor of Escherichia coli (Ftsy) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl Acad. Sci. USA94, 11339–11344 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gasper, R., Scrima, A. & Wittinghofer, A. Structural insights into HypB, a GTP-binding protein that regulates metal binding. J Biol.Chem.281, 27492–27502 (2006). ArticleCASPubMed Google Scholar
Wandinger, S. K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J Biol.Chem.283, 18473–18477 (2008). ArticleCASPubMed Google Scholar
Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol.7, R682–R685 (1997). ArticleCASPubMed Google Scholar
Ghosh, A., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature440, 101–104 (2006). ArticleCASPubMed Google Scholar
Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B. & Rees, D. C. Structure of ADP˙AIF4−-stabilized nitrogenase complex and its implications for signal transduction. Nature387, 370–376 (1997). ArticleCASPubMed Google Scholar
Wallas, T. R., Smith, M. D., Sanchez-Nieto, S. & Schnell, D. J. The roles of Toc34 and Toc75 in targeting the Toc159 preprotein receptor to chloroplasts. J Biol.Chem.278, 44289–44297 (2003). ArticleCASPubMed Google Scholar
Oreb, M., Tews, I. & Schleiff, E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol.18, 19–27 (2008). ArticleCASPubMed Google Scholar
Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature427, 215–221 (2004). ArticleCASPubMed Google Scholar
Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science303, 373–377 (2004). ArticleCASPubMedPubMed Central Google Scholar
Connolly, T. & Gilmore, R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell57, 599–610 (1989). ArticleCASPubMed Google Scholar
Focia, P. J., Gawronski-Salerno, J., Coon, J. S. & Freymann, D. M. Structure of a GDP: AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of peripheral nucleotide interaction site. J Mol.Biol.360, 631–643 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X., Schaffitzel, C., Ban, N. & Shan, S. O. Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc. Natl Acad. Sci. USA106, 1754–1759 (2009). ArticleCASPubMedPubMed Central Google Scholar
Neher, S. B., Bradshaw, N., Floor, S. N., Gross, J. D. & Walter, P. SRP RNA controls a conformational switch regulating the SRP–SRP receptor interaction. Nature Struct. Mol. Biol.15, 916–923 (2008). ArticleCAS Google Scholar
Zhang, X., Kung, S. & Shan, S. O. Demonstration of a multistep mechanism for assembly of the SRP × SRP receptor complex: implications for the catalytic role of SRP RNA. J Mol.Biol.381, 581–593 (2008). ArticleCASPubMedPubMed Central Google Scholar
Egea, P. F., Stroud, R. M. & Walter, P. Targeting proteins to membranes: structure of the signal recognition particle. Curr Opin Struct.Biol.15, 213–220 (2005). ArticleCASPubMed Google Scholar
Barral, Y. & Kinoshita, M. Structural insights shed light onto septin assemblies and function. Curr. Opin. Cell Biol.20, 12–18 (2008). ArticleCASPubMed Google Scholar
Farkasovsky, M., Herter, P., Voss, B. & Wittinghofer, A. Nucleotide binding and filament assembly of recombinant yeast septin complexes. Biol. Chem.386, 643–656 (2005). ArticleCASPubMed Google Scholar
Frazier, J. A. et al. Polymerization of purified yeast septins — evidence that organized filament arrays may not be required for septin function. J. Cell Biol.143, 737–749 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sheffield, P. J. et al. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. J Biol.Chem.278, 3483–3488 (2003). ArticleCASPubMed Google Scholar
Sirajuddin, M. et al. Structural insight into filament formation by mammalian septins. Nature449, 311–315 (2007). ArticleCASPubMed Google Scholar
Huang, Y. W., Surka, M. C., Reynaud, D., Pace-Asciak, C. & Trimble, W. S. GTP binding and hydrolysis kinetics of human septin 2. FEBS J.273, 3248–3260 (2006). ArticleCASPubMed Google Scholar
Mitchison, T. J. & Field, C. M. Cytoskeleton: what does GTP do for septins? Curr. Biol.12, R788–R790 (2002). ArticleCASPubMed Google Scholar
Barral, Y., Mermall, V., Mooseker, M. S. & Snyder, M. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell5, 841–851 (2000). ArticleCASPubMed Google Scholar
Kessler, F. & Schnell, D. J. The function and diversity of plastid protein import pathways: a multilane GTPase highway into plastids. Traffic7, 248–257 (2006). ArticleCASPubMed Google Scholar
Schleiff, E., Jelic, M. & Soll, J. A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc. Natl Acad. Sci. USA100, 4604–4609 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kessler, F., Blobel, G., Patel, H. A. & Schnell, D. J. Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science266, 1035–1039 (1994). ArticleCASPubMed Google Scholar
Hirsch, S., Muckel, E., Heemeyer, F., von Heijne, G. & Soll, J. A receptor component of the chloroplast protein translocation machinery. Science266, 1989–1992 (1994). ArticleCASPubMed Google Scholar
Sun, Y. J. et al. Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nature Struct. Biol.9, 95–100 (2002). ArticleCASPubMed Google Scholar
Koenig, P. et al. The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures. Structure16, 585–596 (2008). ArticleCASPubMed Google Scholar
Koenig, P. et al. On the significance of Toc-GTPase homodimers. J Biol.Chem.283, 23104–23112 (2008). ArticleCASPubMed Google Scholar
Yeh, Y. H. et al. Dimerization is important for the GTPase activity of chloroplast translocon components at Toc33 and psToc159. J Biol.Chem.282, 13845–13853 (2007). ArticleCASPubMed Google Scholar
Reddick, L. E., Vaughn, M. D., Wright, S. J., Campbell, I. M. & Bruce, B. D. In vitro comparative kinetic analysis of the chloroplast Toc GTPases. J. Biol. Chem.282, 11410–11426 (2007). ArticleCASPubMed Google Scholar
Ertel, F. et al. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J Biol. Chem.280, 28281–28289 (2005). ArticleCASPubMed Google Scholar
Smith, M. D., Hiltbrunner, A., Kessler, F. & Schnell, D. J. The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J. Cell Biol.159, 833–843 (2002). ArticleCASPubMedPubMed Central Google Scholar
Praefcke, G. J. K. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol.5, 133–147 (2004). ArticleCAS Google Scholar
Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). ArticleCASPubMed Google Scholar
Niemann, H. H., Knetsch, M. L. W., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J.20, 5813–5821 (2001). ArticleCASPubMedPubMed Central Google Scholar
Prakash, B., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature403, 567–571 (2000). ArticleCASPubMed Google Scholar
Schwemmle, M. & Staeheli, P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J Biol. Chem.269, 11299–11305 (1994). CASPubMed Google Scholar
Prakash, B., Renault, L., Praefcke, G. J. K., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J.19, 4555–4564 (2000). ArticleCASPubMedPubMed Central Google Scholar
Decoster, E., Vassal, A. & Faye, G. MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. J Mol. Biol.232, 79–88 (1993). ArticleCASPubMed Google Scholar
Colby, G., Tu, M. & Tzagoloff, A. Mto1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol. Chem.273, 27945–27952 (1998). ArticleCASPubMed Google Scholar
Li, X. M., Li, R. H., Lin, X. H. & Guan, M. X. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12S rRNA A1555G mutation. J. Biol. Chem.277, 27256–27264 (2002). ArticleCASPubMed Google Scholar
Suzuki, T., Suzuki, T., Wada, T., Saigo, K. & Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J.21, 6581–6589 (2002). ArticleCASPubMedPubMed Central Google Scholar
Scrima, A., Vetter, I. R., Armengod, M. E. & Wittinghofer, A. The structure of the TrmE GTP-binding protein and its implications for tRNA modification. EMBO J.24, 23–33 (2005). ArticleCASPubMed Google Scholar
Yim, L. et al. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function. J Biol. Chem.278, 28378–28387 (2003). ArticleCASPubMed Google Scholar
Meyer, S., Scrima, A., Versees, W. & Wittinghofer, A. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. J Mol. Biol.380, 532–547 (2008). ArticleCASPubMed Google Scholar
Goldberg, J. M., Bosgraaf, L., Van Haastert, P. J. M. & Smith, J. L. Identification of four candidate cGMP targets in Dictylostelium. Proc. Natl Acad. Sci. USA99, 6749–6754 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bosgraaf, L. & Van Haastert, P. J. Roc, a Ras/GTPase domain in complex proteins. Biochim Biophys. Acta1643, 5–10 (2003). ArticleCASPubMed Google Scholar
Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron44, 595–600 (2004). ArticleCASPubMed Google Scholar
Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleiomorphic pathology. Neuron44, 601–607 (2004). ArticleCASPubMed Google Scholar
Smith, W. W. et al. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neurosci.9, 1231–1233 (2006). ArticleCASPubMed Google Scholar
Korr, D. et al. LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell. Signal.18, 910–920 (2006). ArticleCASPubMed Google Scholar
Lewis, P. A. et al. The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochem Biophys Res. Commun.357, 1668–1671 (2007). ArticleCAS Google Scholar
West, A. B. et al. Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol. Genet.16, 223–232 (2007). ArticleCASPubMed Google Scholar
Greggio, E. et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J. Neurochem.102, 93–102 (2007). ArticleCASPubMed Google Scholar
Ito, G. et al. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry46, 1380–1388 (2007). ArticleCASPubMed Google Scholar
Gotthardt, K., Weyand, M., Kortholt, A., Van Haastert, P. J. & Wittinghofer, A. Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase. EMBO J.27, 2239–2249 (2008). ArticleCASPubMedPubMed Central Google Scholar
Deng, J. et al. Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proc. Natl Acad. Sci. USA105, 1499–1504 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jaleel, M. et al. LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity. Biochem. J.405, 307–317 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bickford, L. C., Mossessova, E. & Goldberg, J. A structural view of the COPII vesicle coat. Curr Opin Struct. Biol.14, 147–153 (2004). ArticleCASPubMed Google Scholar
Slep, K. C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 angstrom. Nature409, 1071–1077 (2001). ArticleCASPubMed Google Scholar
Scrima, A., Thomas, C., Deaconescu, D. & Wittinghofer, A. The Rap–RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues. EMBO J.27, 1145–1153 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α˙GDP˙ AIF−4 . Nature372, 276–279 (1994). ArticleCASPubMed Google Scholar
Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science265, 1405–1412 (1994). ArticleCASPubMed Google Scholar
Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science273, 115–117 (1996). ArticleCASPubMed Google Scholar
Pan, X. J., Eathiraj, S., Munson, M. & Lambright, D. G. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature442, 303–306 (2006). ArticleCASPubMed Google Scholar
Gremer, L., Gilsbach, B., Ahmadian, M. R. & Wittinghofer, A. Fluoride complexes of oncogenic Ras mutants to study the Ras–RasGap interaction. Biol. Chem.389, 1163–1171 (2008). ArticleCASPubMed Google Scholar
Tesmer, J. J. G., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4− activated Giα1: stabilization of the transition state or GTP hydrolysis. Cell89, 251–261 (1997). ArticleCASPubMed Google Scholar
Veltel, S., Gasper, R., Eisenacher, E. & Wittinghofer, A. The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nature Struct. Mol. Biol.15, 373–380 (2008). ArticleCAS Google Scholar
Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature426, 563–566 (2003). ArticleCASPubMed Google Scholar
Goldberg, J. Structural and functional analysis of the ARF1–ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell96, 893–902 (1999). ArticleCASPubMed Google Scholar
Lutz, S. et al. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol. Microbiol.5, 123–135 (1991). ArticleCASPubMed Google Scholar
Maier, T., Lottspeich, F. & Bock, A. GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J. Biochem.230, 133–138 (1995). ArticleCASPubMed Google Scholar
Maier, T., Jacobi, A., Sauter, M. & Bock, A. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J. Bacteriol.175, 630–635 (1993). ArticleCASPubMedPubMed Central Google Scholar
Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer—a conserved biological switch. EMBO J.24, 270–282 (2005). ArticleCASPubMedPubMed Central Google Scholar