Dynamics and diversity in autophagy mechanisms: lessons from yeast (original) (raw)
Deter, R. L., Baudhuin, P. & De Duve, C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol.35, C11–C16 (1967). CASPubMedPubMed Central Google Scholar
Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Rev. Mol. Cell Biol.8, 931–937 (2007). ArticleCAS Google Scholar
Mizushima, N. Autophagy: process and function. Genes Dev.21, 2861–2873 (2007). CASPubMed Google Scholar
Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008). ArticleCASPubMedPubMed Central Google Scholar
Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol.119, 301–311 (1992). Reports the discovery of autophagy in yeast. CASPubMed Google Scholar
Baba, M., Takeshige, K., Baba, N. & Ohsumi, Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol.124, 903–913 (1994). CASPubMed Google Scholar
Baba, M., Osumi, M. & Ohsumi, Y. Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct. Funct.20, 465–471 (1995). References 6 and 7 report the detailed morphological characterization of yeast autophagy. CASPubMed Google Scholar
Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett.333, 169–174 (1993). First report on autophagy-defective yeast mutants. CASPubMed Google Scholar
Baba, M., Osumi, M., Scott, S. V., Klionsky, D. J. & Ohsumi, Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J. Cell Biol.139, 1687–1695 (1997). CASPubMedPubMed Central Google Scholar
Harding, T. M., Hefner-Gravink, A., Thumm, M. & Klionsky, D. J. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J. Biol. Chem.271, 17621–17624 (1996). CASPubMed Google Scholar
Thumm, M. et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett.349, 275–280 (1994). CASPubMed Google Scholar
Yuan, W., Tuttle, D. L., Shi, Y. J., Ralph, G. S. & Dunn, W. A. Jr. Glucose-induced microautophagy in Pichia pastoris requires the α-subunit of phosphofructokinase. J. Cell Sci.110, 1935–1945 (1997). CASPubMed Google Scholar
Sakai, Y., Koller, A., Rangell, L. K., Keller, G. A. & Subramani, S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J. Cell Biol.141, 625–636 (1998). CASPubMedPubMed Central Google Scholar
Mukaiyama, H. et al. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells7, 75–90 (2002). CASPubMed Google Scholar
Titorenko, V. I., Keizer, I., Harder, W. & Veenhuis, M. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha.J. Bacteriol.177, 357–363 (1995). CASPubMedPubMed Central Google Scholar
Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell5, 539–545 (2003). CASPubMed Google Scholar
Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol.150, 1507–1513 (2000). Shows dephosphorylation of Atg13 in response to nutrient starvation, which allows Atg13 to interact with Atg1, leading to stimulation of the kinase activity of Atg1. CASPubMedPubMed Central Google Scholar
Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol.152, 519–530 (2001). Identifies two distinct PtdIns 3-kinase complexes, one of which contains Atg14 as a specific component and is required for autophagy. CASPubMedPubMed Central Google Scholar
Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature395, 395–398 (1998). CASPubMed Google Scholar
Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature408, 488–492 (2000). References 19 and 20 report the discovery of two ubiquitin-like protein conjugates required for autophagy, Atg12–Atg5 and Atg82013 PE, respectively. CASPubMed Google Scholar
Shintani, T., Suzuki, K., Kamada, Y., Noda, T. & Ohsumi, Y. Apg2p functions in autophagosome formation on the perivacuolar structure. J. Biol. Chem.276, 30452–30460 (2001). CASPubMed Google Scholar
Wang, C. W. et al. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J. Biol. Chem.276, 30442–30451 (2001). CASPubMed Google Scholar
Noda, T. et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol.148, 465–480 (2000). CASPubMedPubMed Central Google Scholar
Barth, H., Meiling-Wesse, K., Epple, U. D. & Thumm, M. Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett.508, 23–28 (2001). CASPubMed Google Scholar
Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol.147, 435–446 (1999). Reports the identification of Atg8 as a marker protein for the autophagosome and the isolation membrane. CASPubMedPubMed Central Google Scholar
Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J.20, 5971–5981 (2001). Reports the identification of the PAS. CASPubMedPubMed Central Google Scholar
Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells12, 209–218 (2007). Reveals that Atg proteins organize the PAS in a hierarchical manner. CASPubMed Google Scholar
Cao, Y., Cheong, H., Song, H. & Klionsky, D. J. In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J. Cell Biol.182, 703–713 (2008). CASPubMedPubMed Central Google Scholar
Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem.273, 3963–3966 (1998). CASPubMed Google Scholar
Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell124, 471–484 (2006). CASPubMed Google Scholar
Yorimitsu, T., Zaman, S., Broach, J. R. & Klionsky, D. J. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell18, 4180–4189 (2007). CASPubMedPubMed Central Google Scholar
Budovskaya, Y. V., Stephan, J. S., Reggiori, F., Klionsky, D. J. & Herman, P. K. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae.J. Biol. Chem.279, 20663–20671 (2004). CASPubMed Google Scholar
Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene192, 245–250 (1997). CASPubMed Google Scholar
Funakoshi, T., Matsuura, A., Noda, T. & Ohsumi, Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae.Gene192, 207–213 (1997). CASPubMed Google Scholar
Kabeya, Y. et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell16, 2544–2553 (2005). CASPubMedPubMed Central Google Scholar
Kawamata, T. et al. Characterization of a novel autophagy-specific gene, ATG29. Biochem. Biophys. Res. Commun.338, 1884–1889 (2005). CASPubMed Google Scholar
Kabeya, Y., Kawamata, T., Suzuki, K. & Ohsumi, Y. Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun.356, 405–410 (2007). CASPubMed Google Scholar
Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T. & Ohsumi, Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell19, 2039–2050 (2008). CASPubMedPubMed Central Google Scholar
Cheong, H., Nair, U., Geng, J. & Klionsky, D. J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell19, 668–681 (2008). References 38 and 39 show that the Atg1 kinase and its regulators collaboratively function to organize, or reorganize, the PAS in response to nutrient starvation. CASPubMedPubMed Central Google Scholar
Sekito, T., Kawamata, T., Ichikawa, R., Suzuki, K. & Ohsumi, Y. Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells14, 525–538 (2009). CASPubMed Google Scholar
Klionsky, D. J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci.118, 7–18 (2005). CASPubMed Google Scholar
Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol.181, 497–510 (2008). CASPubMedPubMed Central Google Scholar
Chan, E. Y., Longatti, A., McKnight, N. C. & Tooze, S. A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol.29, 157–171 (2009). CASPubMed Google Scholar
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell20, 1981–1991 (2009). CASPubMedPubMed Central Google Scholar
Chang, Y. Y. & Neufeld, T. P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell20, 2004–2014 (2009). CASPubMedPubMed Central Google Scholar
Jung . et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell20, 1992–2003 (2009). CASPubMedPubMed Central Google Scholar
Ganley . et al. ULK1˙ATG13˙FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem.284, 12297–12305. CAS Google Scholar
Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem.275, 992–998 (2000). CASPubMed Google Scholar
Obara, K., Sekito, T., Niimi, K. & Ohsumi, Y. The Atg18–Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem.283, 23972–23980 (2008). CASPubMedPubMed Central Google Scholar
Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science260, 88–91 (1993). CASPubMed Google Scholar
Obara, K., Sekito, T. & Ohsumi, Y. Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol. Biol. Cell17, 1527–1539 (2006). CASPubMedPubMed Central Google Scholar
Dove, S. K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J.23, 1922–1933 (2004). CASPubMedPubMed Central Google Scholar
Stromhaug, P. E., Reggiori, F., Guan, J., Wang, C. W. & Klionsky, D. J. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell15, 3553–3566 (2004). CASPubMedPubMed Central Google Scholar
Efe, J. A., Botelho, R. J. & Emr, S. D. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell18, 4232–4244 (2007). CASPubMedPubMed Central Google Scholar
Obara, K., Noda, T., Niimi, K. & Ohsumi, Y. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in S. cerevisiae. Genes Cells, 13, 537–547 (2008). CASPubMed Google Scholar
Reggiori, F., Tucker, K. A., Stromhaug, P. E. & Klionsky, D. J. The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell6, 79–90 (2004). CASPubMed Google Scholar
Young, A. R. et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci.119, 3888–3900 (2006). CASPubMed Google Scholar
Xie, Z. & Klionsky, D. J. Autophagosome formation: core machinery and adaptations. Nature Cell Biol.9, 1102–1109 (2007). CASPubMed Google Scholar
He, C., Baba, M., Cao, Y. & Klionsky, D. J. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Biol. Cell19, 5506–5516 (2008). CASPubMedPubMed Central Google Scholar
Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol.152, 657–668 (2001). Demonstration of Atg5 localization on the isolation membrane and real-time visualization of the process of autophagosome formation in living cells using GFP-tagged Atg5. CASPubMedPubMed Central Google Scholar
Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol.151, 263–276 (2000). CASPubMedPubMed Central Google Scholar
Kim, J., Huang, W. P. & Klionsky, D. J. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J. Cell Biol.152, 51–64 (2001). CASPubMedPubMed Central Google Scholar
Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell130, 165–178 (2007). Shows that Atg8–PE causes aggregation and hemifusion of liposomesin vitroand that these phenomena represent the function of Atg8 in autophagosome formationin vivo. Google Scholar
Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19, 5720–5728 (2000). CASPubMedPubMed Central Google Scholar
Yoshimoto, K. et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell16, 2967–2983 (2004). CASPubMedPubMed Central Google Scholar
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy4, 151–175 (2008). CASPubMed Google Scholar
Ichimura, Y. et al. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem.279, 40584–40592 (2004). CASPubMed Google Scholar
Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell19, 3290–3298 (2008). CASPubMedPubMed Central Google Scholar
Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell19, 4651–4659 (2008). CASPubMedPubMed Central Google Scholar
Sou, Y. S. et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell19, 4762–4775 (2008). CASPubMedPubMed Central Google Scholar
Mizushima, N., Noda, T. & Ohsumi, Y. Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J.18, 3888–3896 (1999). CASPubMedPubMed Central Google Scholar
Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12–Apg5˙Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem.277, 18619–18625 (2002). CASPubMed Google Scholar
Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J. Cell Sci.116, 1679–1688 (2003). CASPubMed Google Scholar
Geng, J., Baba, M., Nair, U. & Klionsky, D. J. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J. Cell Biol.182, 129–140 (2008). CASPubMedPubMed Central Google Scholar
Hanada, T. & Ohsumi, Y. Structure–function relationship of Atg12, a ubiquitin-like modifier essential for autophagy. Autophagy1, 110–118 (2005). CASPubMed Google Scholar
Hanada, T. et al. The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem.282, 37298–37302 (2007). Shows that the ubiquitin-like protein conjugate Atg12–Atg5 directly stimulates the conjugation reaction of the other ubiquitin-like protein Atg8 to PE. CASPubMed Google Scholar
Fujioka, Y. et al. In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J. Biol. Chem.283, 1921–1928 (2008). CASPubMed Google Scholar
Sou, Y. S., Tanida, I., Komatsu, M., Ueno, T. & Kominami, E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem.281, 3017–3024 (2006). CAS Google Scholar
Oh-oka, K., Nakatogawa, H. & Ohsumi, Y. Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J. Biol. Chem.283, 21847–21852 (2008). CASPubMed Google Scholar
Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell19, 2092–2100 (2008). CASPubMedPubMed Central Google Scholar
Kim, J., Scott, S. V., Oda, M. N. & Klionsky, D. J. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol.137, 609–618 (1997). CASPubMedPubMed Central Google Scholar
Scott, S. V., Guan, J., Hutchins, M. U., Kim, J. & Klionsky, D. J. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell7, 1131–1141 (2001). CASPubMedPubMed Central Google Scholar
Shintani, T., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell3, 825–837 (2002). CASPubMedPubMed Central Google Scholar
Chang, C. Y. & Huang, W. P. Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol. Biol. Cell18, 919–929 (2007). CASPubMedPubMed Central Google Scholar
Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells13, 1211–1218 (2008). CASPubMed Google Scholar
Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol.171, 603–614 (2005). PubMedPubMed Central Google Scholar
Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem.282, 24131–24145 (2007). CASPubMed Google Scholar
Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell131, 1149–1163 (2007). CASPubMed Google Scholar
Shvets, E., Fass, E., Scherz-Shouval, R. & Elazar, Z. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci.121, 2685–2695 (2008). CASPubMed Google Scholar
Ichimura, Y. et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem.283, 22847–22857 (2008). References 86–91 establish the molecular framework for p62-mediated degradation of disease-related protein inclusions through autophagy and its pathological significance. CASPubMed Google Scholar
Nice, D. C., Sato, T. K., Stromhaug, P. E., Emr, S. D. & Klionsky, D. J. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem.277, 30198–30207 (2002). CASPubMed Google Scholar
Kim, J. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol.153, 381–396 (2001). CASPubMedPubMed Central Google Scholar
Shintani, T. & Klionsky, D. J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem.279, 29889–29894 (2004). Shows that PAS organization under nutrient-rich conditions, and thus Cvt vesicle formation, largely depends on the existence of the cargo molecule Ape1 in addition to the Cvt-specific proteins Atg11 and Atg19. CASPubMed Google Scholar
Yorimitsu, T. & Klionsky, D. J. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell16, 1593–1605 (2005). CASPubMedPubMed Central Google Scholar
Farre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell14, 365–376 (2008). CASPubMedPubMed Central Google Scholar
Kanki, T. & Klionsky, D. J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem.283, 32386–32393 (2008). CASPubMedPubMed Central Google Scholar
Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J. Biol. Chem.279, 15621–15629 (2004). CASPubMed Google Scholar
Fujiki, Y. et al. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol.143, 1132–1139 (2007). CASPubMedPubMed Central Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet.36, 585–595 (2004). CASPubMed Google Scholar
Kageyama, T., Suzuki, K. & Ohsumi, Y. Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun.378, 551–557 (2009). CASPubMed Google Scholar
Onodera, J. & Ohsumi, Y. Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J. Biol. Chem.279, 16071–16076 (2004). CASPubMed Google Scholar
Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biol.10, 602–610 (2008). References 102 and 103 report that the cytoplasmic protein Ald6 and ribosomal proteins, respectively, are preferentially degraded in yeast by mechanisms that seem to be distinct from those previously suggested for other selective types of autophagy. CASPubMed Google Scholar