Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol.12, 21–35 (2011). ArticleCAS Google Scholar
Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell126, 955–968 (2006). ArticleCASPubMed Google Scholar
Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem.273, 14484–14494 (1998). ArticleCASPubMed Google Scholar
Wang, X., Campbell, L. E., Miller, C. M. & Proud, C. G. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J.334, 261–267 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bauchart-Thevret, C., Cui, L., Wu, G. & Burrin, D. G. Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. Am. J. Physiol. Endocrinol. Metab.299, e899–e909 (2010). ArticleCASPubMed Google Scholar
Duran, R. V. et al. Glutaminolysis activates Rag–mTORC1 signaling. Mol. Cell47, 349–358 (2012). ArticleCASPubMed Google Scholar
van der Vos, K. E. & Coffer, P. J. Glutamine metabolism links growth factor signaling to the regulation of autophagy. Autophagy8, 1862–1864 (2012). ArticleCASPubMedPubMed Central Google Scholar
van der Vos, K. E. et al. Modulation of glutamine metabolism by the PI(3)K–PKB–FOXO network regulates autophagy. Nature Cell Biol.14, 829–837 (2012). ArticleCASPubMed Google Scholar
Smith, E. M., Finn, S. G., Tee, A. R., Browne, G. J. & Proud, C. G. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem.280, 18717–18727 (2005). ArticleCASPubMed Google Scholar
Long, X., Ortiz-Vega, S., Lin, Y. & Avruch, J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem.280, 23433–23436 (2005). ArticleCASPubMed Google Scholar
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nature Cell Biol.10, 935–945 (2008). ArticleCASPubMed Google Scholar
Nakashima, N., Noguchi, E. & Nishimoto, T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics152, 853–867 (1999). CASPubMedPubMed Central Google Scholar
Sekiguchi, T. et al. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J. Biol. Chem.276, 7246–7257 (2001). ArticleCASPubMed Google Scholar
Gong, R. et al. Crystal structure of the Gtr1p–Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Genes Dev.25, 1668–1673 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jeong, J. H. et al. Crystal structure of the Gtr1pGTP–Gtr2pGDP protein complex reveals large structural rearrangements triggered by GTP-to-GDP conversion. J. Biol. Chem.287, 29648–29653 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell141, 290–303 (2010). ArticleCASPubMedPubMed Central Google Scholar
De Virgilio, C. & Loewith, R. Cell growth control: little eukaryotes make big contributions. Oncogene25, 6392–6415 (2006). ArticleCASPubMed Google Scholar
Binda, M. et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell35, 563–573 (2009). ArticleCASPubMed Google Scholar
Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell150, 1196–1208 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ashrafi, K., Farazi, T. A. & Gordon, J. I. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein _N_-myristoylation during entry into stationary phase. J. Biol. Chem.273, 25864–25874 (1998). ArticleCASPubMed Google Scholar
Kogan, K., Spear, E. D., Kaiser, C. A. & Fass, D. Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J. Mol. Biol.402, 388–398 (2010). ArticleCASPubMed Google Scholar
Zhang, T., Peli-Gulli, M. P., Yang, H., De Virgilio, C. & Ding, J. Ego3 functions as a homodimer to mediate the interaction between Gtr1–Gtr2 and Ego1 in the EGO complex to activate TORC1. Structure20, 2151–2160 (2012). ArticleCASPubMed Google Scholar
Garcia-Saez, I., Lacroix, F. B., Blot, D., Gabel, F. & Skoufias, D. A. Structural characterization of HBXIP: the protein that interacts with the anti-apoptotic protein survivin and the oncogenic viral protein HBx. J. Mol. Biol.405, 331–340 (2011). ArticleCASPubMed Google Scholar
Kurzbauer, R. et al. Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes. Proc. Natl Acad. Sci. USA101, 10984–10989 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lunin, V. V. et al. The structure of the MAPK scaffold, MP1, bound to its partner, p14. A complex with a critical role in endosomal map kinase signaling. J. Biol. Chem.279, 23422–23430 (2004). ArticleCASPubMed Google Scholar
Valbuena, N., Guan, K. L. & Moreno, S. The Vam6–Gtr1/Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J. Cell Sci.125, 1920–1928 (2012). ArticleCASPubMedPubMed Central Google Scholar
Messler, S. et al. The TGF-β signaling modulators TRAP1/TGFBRAP1 and VPS39/Vam6/TLP are essential for early embryonic development. Immunobiology216, 343–350 (2011). ArticleCASPubMed Google Scholar
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside–out mechanism that requires the vacuolar H+-ATPase. Science334, 678–683 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases — nature's most versatile proton pumps. Nature Rev. Mol. Cell Biol.3, 94–103 (2002). ArticleCAS Google Scholar
Fonseca, B. D. et al. Structure-activity analysis of niclosamide reveals potential role for cytoplasmic pH in control of mammalian target of rapamycin complex 1 (mTORC1) signaling. J. Biol. Chem.287, 17530–17545 (2012). ArticleCASPubMedPubMed Central Google Scholar
Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell149, 410–424 (2012). ArticleCASPubMed Google Scholar
Bonfils, G. et al. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell46, 105–110 (2012). ArticleCASPubMed Google Scholar
Avruch, J. et al. Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab.296, e592–e602 (2009). ArticleCASPubMed Google Scholar
Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell147, 728–741 (2011). ArticleCASPubMed Google Scholar
Mizushima, N. & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr.27, 19–40 (2007). ArticleCASPubMed Google Scholar
Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol.13, 132–141 (2011). ArticleCASPubMed Google Scholar
Ganley, I. G. et al. ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem.284, 12297–12305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell20, 1981–1991 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jung, C. H. et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell20, 1992–2003 (2009). CASPubMedPubMed Central Google Scholar
Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. mTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy8, 903–914 (2012). ArticleCASPubMedPubMed Central Google Scholar
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J.31, 1095–1108 (2012). ArticleCASPubMedPubMed Central Google Scholar
Orlova, M., Kanter, E., Krakovich, D. & Kuchin, S. Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot. Cell5, 1831–1837 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z., Wilson, W. A., Fujino, M. A. & Roach, P. J. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol.21, 5742–5752 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hirose, E., Nakashima, N., Sekiguchi, T. & Nishimoto, T. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1–GTPase pathway. J. Cell Sci.111, 11–21 (1998). CASPubMed Google Scholar
Nakashima, N., Noguchi, E. & Nishimoto, T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics152, 853–867 (1999). CASPubMedPubMed Central Google Scholar