The integrin adhesome: from genes and proteins to human disease (original) (raw)
Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Rev. Mol. Cell Biol.2, 793–805 (2001). ArticleCAS Google Scholar
Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell69, 11–25 (1992). ArticleCASPubMed Google Scholar
Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nature Cell Biol.9, 858–867 (2007). ArticleCASPubMed Google Scholar
Geiger, B. & Yamada, K. M. Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol.3, a0050 (2011). ArticleCAS Google Scholar
Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol.10, 21–33 (2009). ArticleCAS Google Scholar
Schiller, H. B. et al. beta1- and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nature Cell Biol.15, 625–636 (2013). ArticleCASPubMed Google Scholar
Zamir, E., Geiger, B. & Kam, Z. Quantitative multicolor compositional imaging resolves molecular domains in cell–matrix adhesions. PLoS ONE3, e1901 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Byron, A., Humphries, J. D., Bass, M. D., Knight, D. & Humphries, M. J. Proteomic analysis of integrin adhesion complexes. Sci. Signal4, pt2 (2011). PubMed Google Scholar
Schiller, H. B., Friedel, C. C., Boulegue, C. & Fassler, R. Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep.12, 259–266 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kuo, J. C. et al. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nature Cell Biol.13, 383–393 (2011). ArticleCASPubMed Google Scholar
Geiger, T. & Zaidel-Bar, R. Opening the floodgates: proteomics and the integrin adhesome. Curr. Opin. Cell Biol.24, 562–568 (2012). ArticleCASPubMed Google Scholar
Winograd-Katz, S. E., Itzkovitz, S., Kam, Z. & Geiger, B. Multiparametric analysis of focal adhesion formation by RNAi-mediated gene knockdown. J. Cell Biol.186, 423–436 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bollinger, M. et al. Tailoring of integrin ligands: probing the charge capability of the metal ion-dependent adhesion site. J. Med. Chem.55, 871–882 (2012). ArticleCASPubMed Google Scholar
Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol.10, 1027–1038 (2008). ArticleCASPubMed Google Scholar
Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell124, 1283–1298 (2006). ArticleCASPubMed Google Scholar
Ussar, S. et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet.4, e1000289 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Becker, K. G., Barnes, K. C., Bright, T. J. & Wang, S. A. The genetic association database. Nature Genet.36, 431–432 (2004). ArticleCASPubMed Google Scholar
Hauser, W. et al. Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc. Natl Acad. Sci. USA96, 8120–8125 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gurniak, C. B., Perlas, E. & Witke, W. The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev. Biol.278, 231–241 (2005). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information. BMC Med. Genom.3, 1 (2010). ArticleCAS Google Scholar
Nurden, A. T., Fiore, M., Nurden, P. & Pillois, X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood118, 5996–6005 (2011). ArticleCASPubMed Google Scholar
Chen, Y. P. et al. Ser-752-->Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc. Natl Acad. Sci. USA89, 10169–10173 (1992). ArticleCASPubMedPubMed Central Google Scholar
Wang, R., Shattil, S. J., Ambruso, D. R. & Newman, P. J. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J. Clin. Invest.100, 2393–2403 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wilcox, D. A., Wautier, J. L., Pidard, D. & Newman, P. J. A single amino acid substitution flanking the fourth calcium binding domain of αIIb prevents maturation of the αIIbβ3 integrin complex. J. Biol. Chem.269, 4450–4457 (1994). ArticleCASPubMed Google Scholar
Gonzalez-Manchon, C. et al. A novel homozygous splice junction mutation in GPIIb associated with alternative splicing, nonsense-mediated decay of GPIIb-mRNA, and type II Glanzmann's thrombasthenia. J. Thromb. Haemost.1, 1071–1078 (2003). ArticleCASPubMed Google Scholar
Nelson, E. J. et al. Three novel β-propeller mutations causing Glanzmann thrombasthenia result in production of normally stable pro-αIIb, but variably impaired progression of pro- αIIbβ3 from endoplasmic reticulum to Golgi. J. Thromb. Haemost.3, 2773–2783 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hodivala-Dilke, K. M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest.103, 229–238 (1999). ArticleCASPubMedPubMed Central Google Scholar
Reynolds, L. E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nature Med.8, 27–34 (2002). ArticleCASPubMed Google Scholar
Reynolds, A. R. et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice. Cancer Res.64, 8643–8650 (2004). ArticleCASPubMed Google Scholar
Weng, S. et al. β3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice. Proc. Natl Acad. Sci. USA100, 6730–6735 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ren, J. et al. β3 integrin deficiency promotes cardiac hypertrophy and inflammation. J. Mol. Cell Cardiol42, 367–377 (2007). ArticleCASPubMed Google Scholar
McHugh, K. P. et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest.105, 433–440 (2000). ArticleCASPubMedPubMed Central Google Scholar
Feng, X. et al. A Glanzmann's mutation in β3 integrin specifically impairs osteoclast function. J. Clin. Invest.107, 1137–1144 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reynolds, L. E. et al. Accelerated re-epithelialization in β3-integrin-deficient- mice is associated with enhanced TGF- β1 signaling. Nature Med.11, 167–174 (2005). ArticleCASPubMed Google Scholar
Carter, M. D. et al. Absence of preference for social novelty and increased grooming in integrin β3 knockout mice: initial studies and future directions. Autism Res.4, 57–67 (2011). ArticlePubMedPubMed Central Google Scholar
Anderson, D. C. & Springer, T. A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu. Rev. Med.38, 175–194 (1987). ArticleCASPubMed Google Scholar
Kishimoto, T. K., Hollander, N., Roberts, T. M., Anderson, D. C. & Springer, T. A. Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell50, 193–202 (1987). ArticleCASPubMed Google Scholar
Kuijpers, T. W. et al. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional β2 integrins. J. Clin. Invest.100, 1725–1733 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wilson, R. W. et al. Gene targeting yields a CD18-mutant mouse for study of inflammation. J. Immunol.151, 1571–1578 (1993). CASPubMed Google Scholar
Bullard, D. C. et al. A polygenic mouse model of psoriasiform skin disease in CD18-deficient mice. Proc. Natl Acad. Sci. USA93, 2116–2121 (1996). ArticleCASPubMedPubMed Central Google Scholar
Scharffetter-Kochanek, K. et al. Spontaneous skin ulceration and defective T cell function in CD18 null mice. J. Exp. Med.188, 119–131 (1998). ArticleCASPubMedPubMed Central Google Scholar
Oreshkova, T. et al. β2 integrin deficiency yields unconventional double-negative T cells distinct from mature classical natural killer T cells in mice. Immunology128, 271–286 (2009). ArticleCASPubMedPubMed Central Google Scholar
Grabbe, S. et al. β2 integrins are required for skin homing of primed T cells but not for priming naive T cells. J. Clin. Invest.109, 183–192 (2002). ArticleCASPubMedPubMed Central Google Scholar
Peters, T. et al. Terminal B cell differentiation is skewed by deregulated interleukin-6 secretion in β2 integrin-deficient mice. J. Leukoc. Biol.80, 599–607 (2006). ArticleCASPubMed Google Scholar
Weinmann, P., Scharffetter-Kochanek, K., Forlow, S. B., Peters, T. & Walzog, B. A role for apoptosis in the control of neutrophil homeostasis in the circulation: insights from CD18-deficient mice. Blood101, 739–746 (2003). ArticleCASPubMed Google Scholar
Desmouliere, A., Geinoz, A., Gabbiani, F. & Gabbiani, G. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol.122, 103–111 (1993). ArticleCASPubMed Google Scholar
Werner, S. & Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev.83, 835–870 (2003). ArticleCASPubMed Google Scholar
Peters, T. et al. Wound-healing defect of CD18−/− mice due to a decrease in TGF-β1 and myofibroblast differentiation. EMBO J.24, 3400–3410 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ussar, S., Wang, H. V., Linder, S., Fassler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res.312, 3142–3151 (2006). ArticleCASPubMed Google Scholar
Bialkowska, K. et al. The integrin co-activator Kindlin-3 is expressed and functional in a non-hematopoietic cell, the endothelial cell. J. Biol. Chem.285, 18640–18649 (2010). ArticleCASPubMedPubMed Central Google Scholar
Alon, R. & Etzioni, A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol.24, 561–566 (2003). ArticleCASPubMed Google Scholar
Kuijpers, T. W. et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood113, 4740–4746 (2009). ArticleCASPubMed Google Scholar
Malinin, N. L. et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nature Med.15, 313–318 (2009). ArticleCASPubMed Google Scholar
Svensson, L. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nature Med.15, 306–312 (2009). ArticleCASPubMed Google Scholar
Sabnis, H. et al. Leukocyte adhesion deficiency-III in an African-American patient. Pediatr. Blood Cancer55, 180–182 (2010). ArticlePubMed Google Scholar
Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Med.14, 325–330 (2008). ArticleCASPubMed Google Scholar
Schmidt, S. et al. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J. Cell Biol.192, 883–897 (2011). ArticleCASPubMedPubMed Central Google Scholar
Alon, R. et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood101, 4437–4445 (2003). ArticleCASPubMed Google Scholar
Moser, M. et al. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nature Med.15, 300–305 (2009). ArticleCASPubMed Google Scholar
Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell134, 353–364 (2008). ArticlePubMedCAS Google Scholar
Mercuri, E. & Muntoni, F. The ever-expanding spectrum of congenital muscular dystrophies. Ann. Neurol.72, 9–17 (2012). ArticlePubMed Google Scholar
Hayashi, Y. K. et al. Mutations in the integrin alpha7 gene cause congenital myopathy. Nature Genet.19, 94–97 (1998). ArticleCASPubMed Google Scholar
Mayer, U. et al. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nature Genet.17, 318–323 (1997). ArticleCASPubMed Google Scholar
Nawrotzki, R., Willem, M., Miosge, N., Brinkmeier, H. & Mayer, U. Defective integrin switch and matrix composition at alpha 7-deficient myotendinous junctions precede the onset of muscular dystrophy in mice. Hum. Mol. Genet.12, 483–495 (2003). ArticleCASPubMed Google Scholar
Flintoff-Dye, N. L. et al. Role for the α7 β1 integrin in vascular development and integrity. Dev. Dyn.234, 11–21 (2005). ArticleCASPubMed Google Scholar
Monkley, S. J., Pritchard, C. A. & Critchley, D. R. Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun.286, 880–885 (2001). ArticleCASPubMed Google Scholar
Debrand, E. et al. Mice carrying a complete deletion of the talin2 coding sequence are viable and fertile. Biochem. Biophys. Res. Commun.426, 190–195 (2012). ArticleCASPubMedPubMed Central Google Scholar
Belkin, A. M., Ornatsky, O. I., Glukhova, M. A. & Koteliansky, V. E. Immunolocalization of meta-vinculin in human smooth and cardiac muscles. J. Cell Biol.107, 545–553 (1988). ArticleCASPubMed Google Scholar
Olson, T. M. et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation105, 431–437 (2002). ArticleCASPubMed Google Scholar
Vasile, V. C. et al. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol. Genet. Metab.87, 169–174 (2006). ArticleCASPubMed Google Scholar
Vasile, V. C., Ommen, S. R., Edwards, W. D. & Ackerman, M. J. A missense mutation in a ubiquitously expressed protein, vinculin, confers susceptibility to hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun.345, 998–1003 (2006). ArticleCASPubMed Google Scholar
Vasile, V. C., Edwards, W. D., Ommen, S. R. & Ackerman, M. J. Obstructive hypertrophic cardiomyopathy is associated with reduced expression of vinculin in the intercalated disc. Biochem. Biophys. Res. Commun.349, 709–715 (2006). ArticleCASPubMed Google Scholar
Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development125, 327–337 (1998). ArticleCASPubMed Google Scholar
Zemljic-Harpf, A. E. et al. Heterozygous inactivation of the vinculin gene predisposes to stress-induced cardiomyopathy. Am. J. Pathol.165, 1033–1044 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zemljic-Harpf, A. E. et al. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol. Cell. Biol.27, 7522–7537 (2007). ArticleCASPubMedPubMed Central Google Scholar
Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol42, 2014–2027 (2003). ArticleCASPubMed Google Scholar
Selcen, D. & Engel, A. G. Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann. Neurol.57, 269–276 (2005). ArticleCASPubMed Google Scholar
Strach, K. et al. ZASPopathy with childhood-onset distal myopathy. J. Neurol.259, 1494–1496 (2012). ArticlePubMed Google Scholar
Zhou, Q. et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J. Cell Biol.155, 605–612 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zheng, M. et al. Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum. Mol. Genet.18, 701–713 (2009). ArticleCASPubMed Google Scholar
Li, Z. et al. A ZASP missense mutation, S196L, leads to cytoskeletal and electrical abnormalities in a mouse model of cardiomyopathy. Circ. Arrhythm. Electrophysiol.3, 646–656 (2010). ArticleCASPubMed Google Scholar
Litjens, S. H., de Pereda, J. M. & Sonnenberg, A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol.16, 376–383 (2006). ArticleCASPubMed Google Scholar
Sawamura, D., Nakano, H. & Matsuzaki, Y. Overview of epidermolysis bullosa. J. Dermatol.37, 214–219 (2010). ArticlePubMed Google Scholar
Georges-Labouesse, E. et al. Absence of integrin α6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genet.13, 370–373 (1996). ArticleCASPubMed Google Scholar
Dowling, J., Yu, Q. C. & Fuchs, E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol.134, 559–572 (1996). ArticleCASPubMed Google Scholar
van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M. & Sonnenberg, A. Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice. Nature Genet.13, 366–369 (1996). ArticleCASPubMed Google Scholar
Tosti, A., Duque-Estrada, B. & Murrell, D. F. Alopecia in epidermolysis bullosa. Dermatol. Clin.28, 165–169 (2010). ArticleCASPubMed Google Scholar
Niculescu, C. et al. Conditional ablation of integrin alpha-6 in mouse epidermis leads to skin fragility and inflammation. Eur. J. Cell Biol.90, 270–277 (2011). ArticleCASPubMed Google Scholar
Raymond, K., Kreft, M., Janssen, H., Calafat, J. & Sonnenberg, A. Keratinocytes display normal proliferation, survival and differentiation in conditional β4-integrin knockout mice. J. Cell Sci.118, 1045–1060 (2005). ArticleCASPubMed Google Scholar
Nicolaou, N. et al. Gain of glycosylation in integrin alpha3 causes lung disease and nephrotic syndrome. J. Clin. Invest.122, 4375–4387 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kreidberg, J. A. et al. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development122, 3537–3547 (1996). ArticleCASPubMed Google Scholar
DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1 Integrin is required for normal development of the epidermal basement membrane. J. Cell Biol.137, 729–742 (1997). ArticleCASPubMedPubMed Central Google Scholar
deHart, G. W., Healy, K. E. & Jones, J. C. The role of α3β1 integrin in determining the supramolecular organization of laminin-5 in the extracellular matrix of keratinocytes. Exp. Cell Res.283, 67–79 (2003). ArticleCASPubMed Google Scholar
Kindler, T. Congenital poikiloderma with traumatic bulla formation and progressive cutaneous atrophy. Br. J. Dermatol.66, 104–111 (1954). ArticleCASPubMed Google Scholar
Siegel, D. H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet.73, 174–187 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ashton, G. H. et al. Recurrent mutations in kindlin-1, a novel keratinocyte focal contact protein, in the autosomal recessive skin fragility and photosensitivity disorder, Kindler syndrome. J. Invest. Dermatol.122, 78–83 (2004). ArticleCASPubMed Google Scholar
Herz, C. et al. Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes. J. Biol. Chem.281, 36082–36090 (2006). ArticleCASPubMed Google Scholar
Qu, H., Wen, T., Pesch, M. & Aumailley, M. Partial loss of epithelial phenotype in kindlin-1-deficient keratinocytes. Am. J. Pathol.180, 1581–1592 (2012). ArticleCASPubMed Google Scholar
D'Souza, M. A., Kimble, R. M. & McMillan, J. R. Kindler syndrome pathogenesis and fermitin family homologue 1 (kindlin-1) function. Dermatol. Clin.28, 115–118 (2010). ArticleCASPubMed Google Scholar
Eke, I., Dickreuter, E. & Cordes, N. Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by beta1 integrin inhibition. Radiother. Oncol.104, 235–242 (2012). ArticleCASPubMed Google Scholar
Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science264, 569–571 (1994). ArticleCASPubMed Google Scholar
Avraamides, C. J., Garmy-Susini, B. & Varner, J. A. Integrins in angiogenesis and lymphangiogenesis. Nature Rev. Cancer8, 604–617 (2008). ArticleCAS Google Scholar
Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Rev. Cancer10, 9–22 (2010). ArticleCAS Google Scholar
Robinson, S. D. & Hodivala-Dilke, K. M. The role of β3-integrins in tumor angiogenesis: context is everything. Curr. Opin. Cell Biol.23, 630–637 (2011). ArticleCASPubMed Google Scholar
Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. & Defilippi, P. Integrin signalling adaptors: not only figurants in the cancer story. Nature Rev. Cancer10, 858–870 (2010). ArticleCAS Google Scholar
Provenzano, P. P. & Keely, P. J. The role of focal adhesion kinase in tumor initiation and progression. Cell Adh. Migr.3, 347–350 (2009). ArticlePubMedPubMed Central Google Scholar
Wary, K. K., Kohler, E. E. & Chatterjee, I. Focal adhesion kinase regulation of neovascularization. Microvasc. Res.83, 64–70 (2012). ArticleCASPubMed Google Scholar
Liao, Y. C. & Lo, S. H. Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int. J. Biochem. Cell Biol.40, 843–847 (2008). ArticleCASPubMed Google Scholar
Durbin, A. D., Hannigan, G. E. & Malkin, D. Oncogenic ILK, tumor suppression and all that JNK. Cell Cycle8, 4060–4066 (2009). ArticleCASPubMed Google Scholar
Hou, C. H., Yang, R. S., Hou, S. M. & Tang, C. H. TNF-α increases αvβ3 integrin expression and migration in human chondrosarcoma cells. J. Cell. Physiol.226, 792–799 (2011). ArticleCASPubMed Google Scholar
Lee, C. Y. et al. IL-8 increases integrin expression and cell motility in human chondrosarcoma cells. J. Cell Biochem.112, 2549–2557 (2011). ArticleCASPubMed Google Scholar
Wu, C. M. et al. IGF-I enhances α5β1 integrin expression and cell motility in human chondrosarcoma cells. J. Cell. Physiol.226, 3270–3277 (2011). ArticleCASPubMed Google Scholar
Nam, E. H., Lee, Y., Park, Y. K., Lee, J. W. & Kim, S. ZEB2 upregulates integrin α5 expression through cooperation with Sp1 to induce invasion during epithelial–mesenchymal transition of human cancer cells. Carcinogenesis33, 563–571 (2012). ArticleCASPubMed Google Scholar
Liu, H. et al. MYC suppresses cancer metastasis by direct transcriptional silencing of αv and β3 integrin subunits. Nature Cell Biol.14, 567–574 (2012). ArticleCASPubMed Google Scholar
Muller, D. W. & Bosserhoff, A. K. Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene27, 6698–6706 (2008). ArticleCASPubMed Google Scholar
Augoff, K. et al. miR-31 is a broad regulator of β1-integrin expression and function in cancer cells. Mol. Cancer Res.9, 1500–1508 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fowler, A. et al. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur. J. Cancer47, 953–963 (2011). ArticleCASPubMed Google Scholar
Lu, H. et al. Integrin-linked kinase expression is elevated in human cardiac hypertrophy and induces hypertrophy in transgenic mice. Circulation114, 2271–2279 (2006). ArticleCASPubMed Google Scholar
Lopes, M. M. et al. Increased expression and phosphorylation of focal adhesion kinase correlates with dysfunction in the volume-overloaded human heart. Clin. Sci. (Lond.)113, 195–204 (2007). ArticleCAS Google Scholar
Clemente, C. F. et al. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ. Res.101, 1339–1348 (2007). ArticleCASPubMed Google Scholar
Gu, R. et al. Increased expression of integrin-linked kinase improves cardiac function and decreases mortality in dilated cardiomyopathy model of rats. PLoS ONE7, e31279 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dalla Costa, A. P. et al. FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc. Res.86, 421–431 (2010). ArticleCASPubMed Google Scholar
DiMichele, L. A. et al. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ. Res.99, 636–645 (2006). ArticleCASPubMedPubMed Central Google Scholar
Peng, X. et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J. Clin. Invest.116, 217–227 (2006). ArticleCASPubMed Google Scholar
Zhu, L., Jiang, R., Aoudjit, L., Jones, N. & Takano, T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol.22, 1621–1630 (2011). ArticleCASPubMedPubMed Central Google Scholar
Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest.121, 4127–4137 (2011). ArticleCASPubMedPubMed Central Google Scholar
Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. I.L. K. PINCH and parvin: the tIPP of integrin signalling. Nature Rev. Mol. Cell Biol.7, 20–31 (2006). ArticleCAS Google Scholar
El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol.17, 1334–1344 (2006). ArticleCASPubMed Google Scholar
Kanasaki, K. et al. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol.313, 584–593 (2008). ArticleCASPubMed Google Scholar
Naves, M. A. et al. Podocyte Wnt/ss-catenin pathway is activated by integrin-linked kinase in clinical and experimental focal segmental glomerulosclerosis. J. Nephrol.25, 401–409 (2012). ArticleCASPubMed Google Scholar
Hattori, M. et al. Increase of integrin-linked kinase activity in cultured podocytes upon stimulation with plasma from patients with recurrent FSGS. Am. J. Transplant8, 1550–1556 (2008). ArticleCASPubMed Google Scholar
Ponticelli, C. Recurrence of focal segmental glomerular sclerosis (FSGS) after renal transplantation. Nephrol. Dial Transplant25, 25–31 (2010). ArticlePubMed Google Scholar
El-Meanawy, A. et al. Identification of nephropathy candidate genes by comparing sclerosis-prone and sclerosis-resistant mouse strain kidney transcriptomes. BMC Nephrol.13, 61 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nishino, T., Sasaki, N., Nagasaki, K., Ahmad, Z. & Agui, T. Genetic background strongly influences the severity of glomerulosclerosis in mice. J. Vet. Med. Sci.72, 1313–1318 (2010). ArticleCASPubMed Google Scholar
Triantafilou, M., Triantafilou, K., Wilson, K. M., Takada, Y. & Fernandez, N. High affinity interactions of Coxsackievirus A9 with integrin αvβ3 (CD51/61) require the CYDMKTTC sequence of β3, but do not require the RGD sequence of the CAV-9 VP1 protein. Hum. Immunol.61, 453–459 (2000). ArticleCASPubMed Google Scholar
Raymond, T., Gorbunova, E., Gavrilovskaya, I. N. & Mackow, E. R. Pathogenic hantaviruses bind plexin-semaphorin-integrin domains present at the apex of inactive, bent alphavbeta3 integrin conformers. Proc. Natl Acad. Sci. USA102, 1163–1168 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zarate, S., Romero, P., Espinosa, R., Arias, C. F. & Lopez, S. VP7 mediates the interaction of rotaviruses with integrin αvβ3 through a novel integrin-binding site. J. Virol.78, 10839–10847 (2004). ArticleCASPubMedPubMed Central Google Scholar
Krishnan, H. H., Sharma-Walia, N., Streblow, D. N., Naranatt, P. P. & Chandran, B. Focal adhesion kinase is critical for entry of Kaposi's sarcoma-associated herpesvirus into target cells. J. Virol.80, 1167–1180 (2006). ArticleCASPubMedPubMed Central Google Scholar
Upla, P. et al. Clustering induces a lateral redistribution of α2β1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell15, 625–636 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jokinen, J. et al. Molecular mechanism of α2β1 integrin interaction with human echovirus 1. EMBO J.29, 196–208 (2010). ArticleCASPubMed Google Scholar
Wang, X., Huang, D. Y., Huong, S. M. & Huang, E. S. Integrin αvβ3 is a coreceptor for human cytomegalovirus. Nature Med.11, 515–521 (2005). ArticleCASPubMed Google Scholar
Wickham, T. J., Mathias, P., Cheresh, D. A. & Nemerow, G. R. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell73, 309–319 (1993). ArticleCASPubMed Google Scholar
Li, E., Stupack, D., Klemke, R., Cheresh, D. A. & Nemerow, G. R. Adenovirus endocytosis via αv integrins requires phosphoinositide-3-OH kinase. J. Virol.72, 2055–2061 (1998). ArticleCASPubMedPubMed Central Google Scholar
Li, E., Stupack, D., Bokoch, G. M. & Nemerow, G. R. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J. Virol.72, 8806–8812 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hauck, C. R., Agerer, F., Muenzner, P. & Schmitter, T. Cellular adhesion molecules as targets for bacterial infection. Eur. J. Cell Biol.85, 235–242 (2006). ArticleCASPubMed Google Scholar
Hoffmann, C., Ohlsen, K. & Hauck, C. R. Integrin-mediated uptake of fibronectin-binding bacteria. Eur. J. Cell Biol.90, 891–896 (2011). ArticleCASPubMed Google Scholar
Roca-Cusachs, P., Gauthier, N. C., Del Rio, A. & Sheetz, M. P. Clustering of α5β1 integrins determines adhesion strength whereas αVβ3 and talin enable mechanotransduction. Proc. Natl Acad. Sci. USA106, 16245–16250 (2009). ArticleCASPubMedPubMed Central Google Scholar
Agerer, F. et al. Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J. Cell Sci.118, 2189–2200 (2005). ArticleCASPubMed Google Scholar
Kirkbride, K. C., Sung, B. H., Sinha, S. & Weaver, A. M. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh. Migr5, 187–198 (2011). ArticlePubMedPubMed Central Google Scholar
Slanina, H., Hebling, S., Hauck, C. R. & Schubert-Unkmeir, A. Cell invasion by Neisseria meningitidis requires a functional interplay between the focal adhesion kinase Src and cortactin. PLoS ONE7, e39613 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bougneres, L. et al. Cortactin and Crk cooperate to trigger actin polymerization during Shigella invasion of epithelial cells. J. Cell Biol.166, 225–235 (2004). ArticleCASPubMedPubMed Central Google Scholar
Boehm, M. et al. Major host factors involved in epithelial cell invasion of Campylobacter jejuni: role of fibronectin, integrin beta1, FAK, Tiam-1, and DOCK180 in activating Rho GTPase Rac1. Front. Cell. Infect. Microbiol.1, 17 (2011). ArticlePubMedPubMed Central Google Scholar
Wang, B., Yurecko, R. S., Dedhar, S. & Cleary, P. P. Integrin-linked kinase is an essential link between integrins and uptake of bacterial pathogens by epithelial cells. Cell. Microbiol.8, 257–266 (2006). ArticlePubMedCAS Google Scholar
Kim, M. et al. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature459, 578–582 (2009). ArticleCASPubMed Google Scholar
Muenzner, P., Rohde, M., Kneitz, S. & Hauck, C. R. CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. J. Cell Biol.170, 825–836 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hoffman, L. M. et al. Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J. Cell Biol.172, 771–782 (2006). ArticleCASPubMedPubMed Central Google Scholar
Muenzner, P., Bachmann, V., Zimmermann, W., Hentschel, J. & Hauck, C. R. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science329, 1197–1201 (2010). ArticleCASPubMed Google Scholar
Goodman, S. L. & Picard, M. Integrins as therapeutic targets. Trends Pharmacol. Sci.33, 405–412 (2012). ArticleCASPubMed Google Scholar
Kane, S. V. et al. Natalizumab for moderate to severe Crohn's disease in clinical practice: the Mayo Clinic Rochester experience. Inflamm. BowelDis.18, 2203–2208 (2012). CAS Google Scholar
Gensicke, H. et al. Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs26, 11–37 (2012). ArticleCASPubMed Google Scholar
Frampton, J. E. & Plosker, G. L. Efalizumab: a review of its use in the management of chronic moderate-to-severe plaque psoriasis. Am. J. Clin. Dermatol.10, 51–72 (2009). ArticlePubMed Google Scholar
Kristensen, S. D. et al. Contemporary use of glycoprotein IIb/IIIa inhibitors. Thromb. Haemost.107, 215–224 (2012). ArticleCASPubMed Google Scholar
McLean, L. P., Shea-Donohue, T. & Cross, R. K. Vedolizumab for the treatment of ulcerative colitis and Crohn's disease. Immunotherapy4, 883–898 (2012). ArticleCASPubMed Google Scholar
Reardon, D. A. & Cheresh, D. Cilengitide: a prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies. Genes Cancer2, 1159–1165 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Patla, I. et al. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nature Cell Biol.12, 909–915 (2010). ArticleCASPubMed Google Scholar
Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genet.33, 228–237 (2003). ArticleCASPubMed Google Scholar
Ozsolak, F. & Milos, P. M. RNA sequencing: advances, challenges and opportunities. Nature Rev. Genet.12, 87–98 (2011). ArticleCASPubMed Google Scholar
Choudhary, C. & Mann, M. Decoding signalling networks by mass spectrometry-based proteomics. Nature Rev. Mol. Cell Biol.11, 427–439 (2010). ArticleCAS Google Scholar
Mann, M. & Kelleher, N. L. Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl Acad. Sci. USA105, 18132–18138 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cox, J. & Mann, M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem.80, 273–299 (2011). ArticleCASPubMed Google Scholar
Medalia, O. & Geiger, B. Frontiers of microscopy-based research into cell-matrix adhesions. Curr. Opin. Cell Biol.22, 659–668 (2010). ArticleCASPubMed Google Scholar
North, A. J., Galazkiewicz, B., Byers, T. J., Glenney, J. R. Jr & Small, J. V. Complementary distributions of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J. Cell Biol.120, 1159–1167 (1993). ArticleCASPubMed Google Scholar
Bokstad, M., Sabanay, H., Dahan, I., Geiger, B. & Medalia, O. Reconstructing adhesion structures in tissues by cryo-electron tomography of vitrified frozen sections. J. Struct. Biol.178, 76–83 (2012). ArticlePubMed Google Scholar
Nikolopoulos, S. N. et al. Targeted deletion of the integrin β4 signaling domain suppresses laminin-5-dependent nuclear entry of mitogen-activated protein kinases and NF-κB, causing defects in epidermal growth and migration. Mol. Cell. Biol.25, 6090–6102 (2005). ArticleCASPubMedPubMed Central Google Scholar