RNA sequencing: advances, challenges and opportunities (original) (raw)
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007). ArticleCASPubMed Google Scholar
Berretta, J. & Morillon, A. Pervasive transcription constitutes a new level of eukaryotic genome regulation. EMBO Rep.10, 973–982 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kapranov, P., Willingham, A. T. & Gingeras, T. R. Genome-wide transcription and the implications for genomic organization. Nature Rev. Genet.8, 413–423 (2007). ArticleCASPubMed Google Scholar
Metzker, M. L. Sequencing technologies — the next generation. Nature Rev. Genet.11, 31–46 (2010). This Review provides a comprehensive overview of currently available and in-development NGS technologies. ArticleCASPubMed Google Scholar
Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nature Rev. Genet.10, 57–63 (2009). ArticleCASPubMed Google Scholar
van Vliet, A. H. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol. Lett.302, 1–7 (2010). ArticleCASPubMed Google Scholar
Ozsolak, F. et al. Direct RNA sequencing. Nature461, 814–818 (2009). The first technology for high-throughput direct sequencing of RNA molecules without prior reverse transcription. ArticleCASPubMed Google Scholar
Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genet.38, 626–635 (2006). ArticleCASPubMed Google Scholar
Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA100, 15776–15781 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ni, T. et al. A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nature Methods7, 521–527 (2010). ArticleCASPubMedPubMed Central Google Scholar
Plessy, C. et al. Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nature Methods7, 528–534 (2010). ArticleCASPubMedPubMed Central Google Scholar
Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134, 521–533 (2008). ArticleCASPubMedPubMed Central Google Scholar
Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature457, 1028–1032 (2009). This paper raises the possibility of 5′-cap addition during post-transcriptional processing steps.
Faghihi, M. A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nature Rev. Mol. Cell Biol.10, 637–643 (2009). An excellent review of the literature on sense and antisense transcription. ArticleCAS Google Scholar
Gubler, U. Second-strand cDNA synthesis: mRNA fragments as primers. Meth. Enzymol.152, 330–335 (1987). ArticleCAS Google Scholar
Perocchi, F., Xu, Z., Clauder-Munster, S. & Steinmetz, L. M. Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res.35, e128 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Spiegelman, S. et al. DNA-directed DNA polymerase activity in oncogenic RNA viruses. Nature227, 1029–1031 (1970). ArticleCASPubMed Google Scholar
Wu, J. Q. et al. Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol.9, R3 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods5, 613–619 (2008). ArticleCASPubMed Google Scholar
Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science322, 1845–1848 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lipson, D. et al. Quantification of the yeast transcriptome by single-molecule sequencing. Nature Biotechnol.27, 652–658 (2009). ArticleCAS Google Scholar
He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N. & Kinzler, K. W. The antisense transcriptomes of human cells. Science322, 1855–1857 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science324, 218–223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Faulhammer, D., Lipton, R. J. & Landweber, L. F. Fidelity of enzymatic ligation for DNA computing. J. Comput. Biol.7, 839–848 (2000). ArticleCASPubMed Google Scholar
Housby, J. N. & Southern, E. M. Fidelity of DNA ligation: a novel experimental approach based on the polymerisation of libraries of oligonucleotides. Nucleic Acids Res.26, 4259–4266 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dohm, J. C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res.36, e105 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Goren, A. et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods7, 47–49 (2010). ArticleCASPubMed Google Scholar
Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nature Methods6, 291–295 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, G. S. & Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Rev. Genet.8, 749–761 (2007). ArticleCASPubMed Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods5, 621–628 (2008). ArticleCASPubMed Google Scholar
Sultan, M. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science321, 956–960 (2008). ArticleCASPubMed Google Scholar
Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nature Methods6, 377–382 (2009). ArticleCASPubMed Google Scholar
Richard, H. et al. Prediction of alternative isoforms from exon expression levels in RNA-seq experiments. Nucleic Acids Res.38, e112 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Ameur, A., Wetterbom, A., Feuk, L. & Gyllensten, U. Global and unbiased detection of splice junctions from RNA-seq data. Genome Biol.11, R34 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science323, 133–138 (2009). ArticleCASPubMed Google Scholar
Olasagasti, F. et al. Replication of individual DNA molecules under electronic control using a protein nanopore. Nature Nanotech.5, 798–806 (2010). ArticleCAS Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nature Rev. Cancer7, 233–245 (2007). ArticleCAS Google Scholar
Zhao, Q. et al. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc. Natl Acad. Sci. USA106, 1886–1891 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, H., Wang, J., Mor, G. & Sklar, J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science321, 1357–1361 (2008). ArticleCASPubMed Google Scholar
Maher, C. A. et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc. Natl Acad. Sci. USA106, 12353–12358 (2009). ArticleCASPubMedPubMed Central Google Scholar
Palanisamy, N. et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Med.16, 793–798 (2010). ArticleCASPubMed Google Scholar
McManus, C. J., Duff, M. O., Eipper-Mains, J. & Graveley, B. R. Global analysis of trans-splicing in Drosophila. Proc. Natl Acad. Sci. USA107, 12975–12979 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chepelev, I., Wei, G., Tang, Q. & Zhao, K. Detection of single nucleotide variations in expressed exons of the human genome using RNA-seq. Nucleic Acids Res.37, e106 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Cirulli, E. T. et al. Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol.11 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature461, 809–813 (2009). ArticleCASPubMed Google Scholar
Levin, J. Z. et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol.10, R115 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Li, J. B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science324, 1210–1213 (2009). CASPubMed Google Scholar
Zhang, K. et al. Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nature Methods6, 613–618 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nature Rev. Genet.10, 94–108 (2009). ArticleCASPubMed Google Scholar
Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev.20, 3407–3425 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell127, 1193–1207 (2006). ArticleCASPubMed Google Scholar
Taft, R. J. et al. Tiny RNAs associated with transcription start sites in animals. Nature Genet.41, 572–578 (2009). ArticleCASPubMed Google Scholar
Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nature Genet.38, 1375–1377 (2006). ArticleCASPubMed Google Scholar
Kapranov, P. et al. New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature466, 642–646 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). ArticleCASPubMed Google Scholar
Linsen, S. E. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nature Methods6, 474–476 (2009). The authors describe the difficulties associated with the analysis and quantification of short RNA species using current NGS platforms. ArticleCASPubMed Google Scholar
Cocquet, J., Chong, A., Zhang, G. & Veitia, R. A. Reverse transcriptase template switching and false alternative transcripts. Genomics88, 127–131 (2006). ArticleCASPubMed Google Scholar
Mader, R. M. et al. Reverse transcriptase template switching during reverse transcriptase-polymerase chain reaction: artificial generation of deletions in ribonucleotide reductase mRNA. J. Lab. Clin. Med.137, 422–428 (2001). ArticleCASPubMed Google Scholar
Roy, S. W. & Irimia, M. When good transcripts go bad: artifactual RT-PCR 'splicing' and genome analysis. Bioessays30, 601–605 (2008). ArticleCASPubMed Google Scholar
Chen, D. & Patton, J. T. Reverse transcriptase adds nontemplated nucleotides to cDNAs during 5′-RACE and primer extension. Biotechniques30, 574–582 (2001). ArticleCASPubMed Google Scholar
Roberts, J. D. et al. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol. Cell. Biol.9, 469–476 (1989). ArticleCASPubMedPubMed Central Google Scholar
Armour, C. D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nature Methods6, 647–649 (2009). ArticleCASPubMed Google Scholar
Hansen, K. D., Brenner, S. E. & Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res.38, e131 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Rosenkranz, R., Borodina, T., Lehrach, H. & Himmelbauer, H. Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics92, 187–194 (2008). ArticleCASPubMed Google Scholar
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol.11, R14 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-seq gene expression estimation with read mapping uncertainty. Bioinformatics26, 493–500 (2010). ArticlePubMedCAS Google Scholar
Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotech.28, 503–510 (2010). ArticleCAS Google Scholar
Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech.28, 511–515 (2010). ArticleCAS Google Scholar
Shcherbik, N., Wang, M., Lapik, Y. R., Srivastava, L. & Pestov, D. G. Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells. EMBO Rep.11, 106–111 (2010). ArticleCASPubMedPubMed Central Google Scholar
Makeyev, E. V. & Bamford, D. H. Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6. EMBO J.19, 124–133 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell143, 1018–1029 (2010). ArticleCASPubMedPubMed Central Google Scholar
Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R. & Liotta, L. A. Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet.14, 272–276 (1998). ArticleCASPubMed Google Scholar
Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B. & Riggs, A. D. Genomic sequencing and methylation analysis by ligation mediated PCR. Science246, 810–813 (1989). ArticleCASPubMed Google Scholar
Dean, F. B. et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA99, 5261–5266 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dafforn, A. et al. Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques37, 854–857 (2004). ArticleCASPubMed Google Scholar
Nygaard, V. & Hovig, E. Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res.34, 996–1014 (2006). This review provides a good overview of the current low-quantity RNA applications and the complications associated with them. ArticleCASPubMedPubMed Central Google Scholar
Geiss, G. K. et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotech.26, 317–325 (2008). ArticleCAS Google Scholar
Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science326, 257–263 (2009). ArticleCASPubMedPubMed Central Google Scholar
Byrne, J. A., Nguyen, H. N. & Reijo Pera, R. A. Enhanced generation of induced pluripotent stem cells from a subpopulation of human fibroblasts. PLoS ONE4, e7118 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Helzer, K. T. et al. Circulating tumor cells are transcriptionally similar to the primary tumor in a murine prostate model. Cancer Res.69, 7860–7866 (2009). ArticleCASPubMed Google Scholar
Lo, Y. M. et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nature Med.13, 218–223 (2007). This paper describes the quantification of extracellular circulating RNA in mother's plasma during pregnancy to detect fetal aneuploidy. ArticleCASPubMed Google Scholar