Microbial colonization and controls in dryland systems (original) (raw)

References

  1. Thomas, D. S. G. in Arid Zone Geomorphology: Process, Form and Change in Drylands (ed. Thomas, D. S. G.) 3–16 (Wiley-Blackwell, 2011).
    Google Scholar
  2. Barrow, C. J. World Atlas of Desertification (United Nations Environment Program) (Edward Arnold, 1992).
    Google Scholar
  3. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).
    Article Google Scholar
  4. Millenium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Desertification Synthesis (World Resources Institute, 2005).
  5. Laity, J. in Deserts and Desert Environments (Wiley-Blackwell, 2008).
    Google Scholar
  6. Belnap, J., Budel, B. & Lange, O. L. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 3–30 (Springer-Verlag, 2003). An excellent introduction to the importance of desert surface communities, in a book that is recognized as the most comprehensive treatment of BSC ecology.
    Book Google Scholar
  7. Warren-Rhodes, K. A. et al. Hypolithic bacteria, dry limit of photosynthesis and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389–398 (2006). This study ascertains the dry limit for life in the most arid desert on Earth, as well as the positive correlation between aridity and the age of SRSCs.
    Article PubMed Google Scholar
  8. Pointing, S. B., et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009).
    Article PubMed PubMed Central Google Scholar
  9. Wong, K. Y., et al. Endolithic microbial colonization of limestone in a high altitude arid environment. Microb. Ecol. 59, 689–699 (2010).
    Article PubMed Google Scholar
  10. Caruso, T., Chan, Y., Lacap, D. C., McKay, C. P. & Pointing, S. B. Stochastic and deterministic processes interact to determine global biogeography of arid soil bacteria. ISME J. 5, 1406–1413 (2011).
    Article PubMed PubMed Central Google Scholar
  11. Davila, A., et al. Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J. Geophys. Res. 113, G01028 (2008).
    Article Google Scholar
  12. Azúa-Bustos, A. et al. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 61, 568–581 (2011).
    Article PubMed Google Scholar
  13. Lange, O. L. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 217–240 (Springer-Verlag, 2003).
    Google Scholar
  14. Warren-Rhodes, K. A., et al. Lithic cyanobacterial ecology across environmental gradients and spatial scales in China's hot and cold deserts. FEMS Microbiol. Ecol. 61, 470–482 (2007).
    Article CAS PubMed Google Scholar
  15. Schlesinger, W. H., et al. Community composition and photosynthesis by photoautotophs under quartz pebbles, southern Mojave Desert. Ecology 84, 3222–3231 (2003).
    Article Google Scholar
  16. Tracy, C. R., et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ. Microbiol. 12, 592–607 (2010).
    Article PubMed Google Scholar
  17. Wendler, G. & Eaton, F. On the desertification of the Sahel Zone part 1: ground observations. Clim. Change 5, 365–380 (1983).
    Article Google Scholar
  18. Belnap, J. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 177–192 (Springer-Verlag, 2003).
    Book Google Scholar
  19. Bahl, J. et al. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Commun. 2, 163 (2011). This article reveals the ubiquity of the cyanobacterial Chroococcidiopsis spp. in deserts worldwide and uncovers climate-related patterns in biogeography.
    Article CAS Google Scholar
  20. Wong, K. Y., et al. Hypolithic colonization of quartz pavement in the high altitude tundra of central Tibet. Microb. Ecol. 60, 730–739 (2010).
    Article PubMed PubMed Central Google Scholar
  21. Nash, T. H. I. I. I., White, S. L. & Marsh, J. E. Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80, 470–479 (1977).
    Article Google Scholar
  22. Staley, J. T., Palmer, F. & Adams, J. B. Microcolonial fungi: common inhabitants on desert rocks? Science 215, 1093–1095 (1982).
    Article CAS PubMed Google Scholar
  23. Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).
    Article CAS PubMed Google Scholar
  24. Dorn, R. I. & Oberlander, T. M. Microbial origin of desert varnishes. Science 213, 1245–1247 (1981).
    Article CAS PubMed Google Scholar
  25. Kuhlman, K. R., et al. Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Appl. Environ. Microbiol. 72, 1708–1715 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  26. Friedmann, E. I. Endolithic microbial life in hot and cold deserts. Orig. Life 10, 223–235 (1980). A classic paper by one of the great pioneers of desert microbiology, identifying the nature of endolithic colonization in hot and cold deserts.
    Article CAS PubMed Google Scholar
  27. Buedel, B. & Wessels, D. C. J. Rock inhabiting blue-green algae cyanobacteria from hot arid regions. Archiv. Hydrobiol. 92, 385–398 (1991).
    Google Scholar
  28. Kellog, C. A. & Griffin, D. W. Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 21, 638–644 (2006).
    Article Google Scholar
  29. Griffin, D. W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20, 459–477 (2007).
    Article PubMed PubMed Central Google Scholar
  30. Pointing, S. B., Warren-Rhodes, K. A., Lacap, D. C., Rhodes, K. L. & McKay, C. P. Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China's hot and cold hyperarid deserts. Environ. Microbiol. 9, 414–424 (2007).
    Article CAS PubMed Google Scholar
  31. Bowker, M. A., Belnap, J., Davidson, D. W. & Goldstein, H. P. Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J. Ecol. 43, 152–163 (2006).
    Google Scholar
  32. Liu, Y., et al. Control of lunar and martian dust—experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of inner Mongolia, China. Astrobiology 8, 75–86 (2008).
    Article CAS PubMed Google Scholar
  33. Lange, O. L. Twenty-three years of growth measurements on the crustose lichen Caloplaca aurantia in the central Negev Desert, Israel. J. Bot. 39, 883–894 (1990).
    Google Scholar
  34. Quade, J. Desert pavements and associated rock varnishes in the Mojave Desert: how old can they be? Geology 29, 855–858 (2001).
    Article Google Scholar
  35. Gao, Q. & Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nature Rev. Microbiol. 9, 791–802 (2011).
    Article CAS Google Scholar
  36. Daly, M. J. A new perspective on radiation resistance based on Deinococcus radiodurans. Nature Rev. Microbiol. 7, 237–245 (2009).
    Article CAS Google Scholar
  37. Potts, M. Desiccation tolerance of prokaryotes. Microbiol. Mol. Biol. Rev. 58, 755–805 (1994).
    CAS Google Scholar
  38. Yura, T., Kanemori, M. & Morita, M. T. in Bacterial Stress Responses (eds Storz, G. & Hengge-Aronis, R.) 3–18 (American Society for Microbiology Press, 2000).
    Google Scholar
  39. Oren, A. & Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 269, 1–10 (2007).
    Article CAS PubMed Google Scholar
  40. Billi, D. & Potts, M. Life and death of dried prokaryotes. Res. Microbiol. 153, 7–12 (2002).
    Article CAS PubMed Google Scholar
  41. Cox, M. M. & Battista, J. R. Deinococcus radiodurans — the consummate survivor. Nature Rev. Microbiol. 3, 882–892 (2005).
    Article CAS Google Scholar
  42. Billi, D., Friedmann, I. E., Hofer, K. G., Grilli-Caiola, M. & Ocampo-Friedmann, R. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl. Environ. Microbiol. 66, 1489–1492 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  43. Cockell, C. S. & Horneck, G. The history of the UV radiation climate of the earth – theoretical and space-based observations. Photochem. Photobiol. 73, 447–451 (2001).
    Article CAS PubMed Google Scholar
  44. Garcia-Pichel, F. & Pringault, O. Cyanobacteria track water in desert soils. Nature 413, 380–381 (2001).
    Article CAS PubMed Google Scholar
  45. Mazor, G., Kidron, G. J., Vonshak, A. & Abelovich, A. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21, 121–130 (1996).
    Article CAS Google Scholar
  46. Viles, H. in Arid Zone Geomorphology: Process, Form and Change in Drylands (ed. Thomas, D. S. G.) 131–180 (Wiley-Blackwell, 2011).
    Google Scholar
  47. Buedel, B. et al. Reshaping of sandstone surfaces by cryptoendolithic cyanbacteria: bioalkination causes chemical weathering in arid landscapes. Geobiology 2, 261–268 (2004).
    Article Google Scholar
  48. Viles, H. Ecological perspectives on rock surface weathering: towards a conceptual model. Geomorphology 13, 21–35 (1995).
    Article Google Scholar
  49. Bennett, P. C., Rogers, J. R. & Choi, W. J. Silicates, silicate weathering, and microbial ecology. Geomicrobiol. J. 18, 3–19 (2001).
    Article CAS Google Scholar
  50. Banfield, J. F., Barker, W. W., Weelch, S. A. & Taunton, A. Biological impacts of mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl Acad. Sci. USA 96, 3404–3411 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  51. Gorbushina, A. A. in Fungi in Biogeochemical Cycles (ed. Gadd, G. M.) 267–288 (Cambridge Univ. Press, 2006).
    Book Google Scholar
  52. Garcia-Pichel, F., Ramirez-Reinat, E. & Gao, Q. Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc. Natl Acad. Sci. USA 50, 21749–21754 (2010).
    Article Google Scholar
  53. Fomina, M., Burford, E. P. & Gadd, G. M. in Fungi in Biogeochemical Cycles (ed. Gadd, G. M.) 236–266 (Cambridge Univ. Press, 2006).
    Book Google Scholar
  54. Danin, A. & Garty, J. Distribution of cyanobacteria and lichens on hillsides of the Negev Highlands and their impact on biogenic weathering. Zeitschrift Geomorphol. 27, 423–444 (1983).
    Google Scholar
  55. Schwartzmann, D. W. & Volk, T. Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457–460 (1989). This report describes how SRSCs enhance weathering of mineral substrates by orders of magnitude.
    Article Google Scholar
  56. Hopkins, D. W., et al. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic Dry Valleys. Environ. Microbiol. 11, 597–608 (2008).
    Article CAS Google Scholar
  57. Dregne, H. E. Desertification of Arid Lands: Advances in Desert and Arid Land Technology and Development Vol. 3 (Harwood Academic, 1983).
    Google Scholar
  58. Belnap, J. & Gardner, J. S. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat. 53, 40–47 (1993).
    Google Scholar
  59. Belnap, J. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process. 20, 3159–3178 (2006).
    Article CAS Google Scholar
  60. Lange, O. L., Meyer, A., Zellner, H. & Heber, U. Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct. Ecol. 8, 253–264 (1994).
    Article Google Scholar
  61. Rietkirk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
    Article CAS Google Scholar
  62. Grote, E. E., Belnap, J., Housman, D. C. & Sparks, J. P. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob. Change Biol. 16, 2763–2774 (2010).
    Article Google Scholar
  63. Rao, D. L. N. & Burns, R. G. Use of blue-green algae and bryophyte biomass as a source of nitrogen for oil-seed rape. Biol. Fertil. Soils 10, 61–64 (1990).
    Google Scholar
  64. Rogers, S. L. & Burns, R. G. Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol. Fert. Soils 18, 209–215 (1994).
    Article Google Scholar
  65. Lange, O. L., et al. Taxonomic composition and photosynthetic characteristics of the “biological crusts” covering sand dunes in the Western Negev Desert. Funct. Ecol. 6, 519–527 (1992).
    Article Google Scholar
  66. McLendon, T. & Redente, E. F. Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a semi-arid sagebrush site. Oecologia 91, 312–317 (1992).
    Article PubMed Google Scholar
  67. Romney, E. M., Wallace, A. & Hunter, R. B. in Nitrogen in Desert Ecosystems (eds West, N. E. & Skujins, J. J.) (Dowden, Hutchison & Ross, 1978).
    Google Scholar
  68. Belnap, J. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 241–261 (Springer Verlag, 2003).
    Book Google Scholar
  69. Johnson, S. L., Neuer, S. & Garcia-Pichel, F. Exports of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ. Microbiol. 9, 680–689 (2007).
    Article CAS PubMed Google Scholar
  70. Harper, K. T. & Belnap, J. The influence of biological soil crusts on mineral uptake by associated vascular plants. J. Arid Environ. 47, 347–357 (2001).
    Article Google Scholar
  71. Evans, R. D. & Ehleringer, J. R. A break in the nitrogen cycle in arid lands? Evidence from 15N of soils. Oecologia 94, 314–317 (1993).
    Article CAS PubMed Google Scholar
  72. Crenshaw, C., Lauber, C., Sinsabaugh, R. L. & Stavely, L. K. Fungal dominance of nitrogen transformation in semi-arid grassland. Biogeochemistry 87, 17–27 (2008).
    Article CAS Google Scholar
  73. Johnson, S. L., Budinoff, C. R., Belnap, J. & Garcia-Pichel, F. Relevance of ammonium oxidation within biological soil crust communities. Environ. Microbiol. 7, 1–12 (2004).
    Article CAS Google Scholar
  74. McCalley, C. K. & Sparks, J. P. Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326, 837–840 (2009).
    Article CAS PubMed Google Scholar
  75. Friedmann, I. E. & Kibler, A. P. Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb. Ecol. 6, 95–108 (1980).
    Article CAS PubMed Google Scholar
  76. Lange, W. Chelating agents and blue-green algae. Can. J. Microbiol. 20, 1311–1321 (1974).
    Article CAS Google Scholar
  77. Bose, P., Nagpal, U. S., Venkataraman, G. S. & Goyal, S. K. Solubilization of tricalcium phosphate by blue-green algae. Curr. Sci. 40, 165–166 (1971).
    CAS Google Scholar
  78. Gadd, G. M. Biosorption. Chem. Industry 13, 421–426 (1990).
    Google Scholar
  79. Geesey, G. & Jang, L. in Microbial Mineral Recovery (eds Ehrlich, H. L. & Brierly, C. L.) 223–247 (McGraw-Hill, 1990).
    Google Scholar
  80. Reynolds, R. L., Belnap, J., Reheis, M., Lamothe, P. & Luizers, F. Aoelian dust in Colorado Plateau soils: nutrient inputs and recent change in sources. Proc. Natl Acad. Sci. USA 98, 7123–7127 (2001). This work highlights the role of SRSCs in the capture and retention of desert dust.
    Article CAS PubMed PubMed Central Google Scholar
  81. Bowling, D. R., Grote, E. E. & Belnap, J. Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. J. Geophys. Res. 116, G03028 (2011).
    Google Scholar
  82. Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).
    Article PubMed Google Scholar
  83. Belnap, J. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 167–174 (Springer-Verlag, 2003).
    Book Google Scholar
  84. Darby, B. J., Neher, D. A. & Belnap, J. Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Appl. Soil Ecol. 35, 203–212 (2007).
    Article Google Scholar
  85. Johnson, N. C., Wilson, G. W. T., Bowker, M. A., Wilson, J. A. & Miller, R. M. Resource limitation is a driver of local adaptation in mycorrhizal symbioses 2010. Proc. Natl Acad. Sci. USA 107, 2093–2098 (2010).
    Article PubMed PubMed Central Google Scholar
  86. Green, L. E., Porras-Alfaro, A. & Sinsabaugh, R. L. Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J. Ecol. 96, 1076–1085 (2008). This article demonstrates the crucial role of SRSCs in carbon and nitrogen transfer to plant communities.
    Article CAS Google Scholar
  87. Harper, K. T. & Pendleton, R. L. Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? Great Basin Nat. 53, 59–72 (1993).
    Google Scholar
  88. Porras-Alfaro, A. & Bayman, P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49, 291–315 (2011).
    Article CAS PubMed Google Scholar
  89. Egerton-Warburton, L. M., Graham, R. C. & Hubbert, K. R. Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249, 331–342 (2003).
    Article CAS Google Scholar
  90. Wiggs, G. F. S. in Arid Zone Geomorphology: Process, Form and Change in Drylands (ed. Thomas, D. S. G.) 583–598 (Wiley-Blackwell, 2011).
    Book Google Scholar
  91. Middleton, N. J. in Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport (eds Leinen, M. & Sarnthein, M.) 97–132 (Springer-Verlag, 1989).
    Book Google Scholar
  92. Field, J. P. et al. The ecology of dust. Frontiers Ecol. Env. 8, 423–430 (2010).
    Article Google Scholar
  93. Neff, J. C., Ballantyne, A. P. & Farmer, G. L. Increasing eolian dust deposition in the western United States linked to human activity. Nature Geosci. 1, 189–195 (2008).
    Article CAS Google Scholar
  94. Painter, T. H., et al. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl Acad. Sci. USA 107, 17125–17130 (2010). This report illustrates the fact that disturbance of desert SRSCs can lead to regional-scale disturbances in hydrology.
    Article PubMed PubMed Central Google Scholar
  95. Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen fixation. Nature Rev. Microbiol. 9, 499–508 (2011).
    Article CAS Google Scholar
  96. Jeon, E. M., et al. Impact of Asian dust events on airborne bacterial community assessed by molecular analysis. Atmos. Environ. 45, 4313–4321 (2011).
    Article CAS Google Scholar
  97. Kuske, C. R., Yaeger, C. M., Johnson, S., Ticknor, O. L. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6, 886–897 (2012).
    Article CAS PubMed Google Scholar
  98. Belnap, J. & Eldridge, D. in Biological Soil Crusts: Structure, Function, and Management (eds Belnap, J. & Lange, O. L.) 363–384 (Springer-Verlag, 2003).
    Book Google Scholar
  99. Belnap, J. Recovery rates of cryptobiotic crusts: Inoculant use and assessment methods. Great Basin Nat. 53, 89–95 (1993).
    Google Scholar
  100. Buttars, S. A. et al. Pelletized cyanobacterial soil amendments: laboratory testing for survival, escapability, and nitrogen fixation. Arid Soil Res. Rehabil. 12, 165–178 (1998).
    Google Scholar
  101. Chen, L., et al. Man-made desert algal crusts as affected by environmental factors in Inner Mongolia, China. J. Arid. Environ. 67, 521–527 (2006).
    Article Google Scholar
  102. Wang, W., Liu, Y., Li, D., Hu, C. & Rao, B. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol. Biochem. 41, 926–929 (2009).
    Article CAS Google Scholar
  103. US National Research Council. Basic Research Opportunities in the Earth Sciences (The National Academies Press, 2001).
  104. Budel, B., Karsten, U. & Garcia-Pichel, F. Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed rock-inhabiting cyanobacterial lichens. Oecologia 112, 165–172 (1997).
    Article CAS PubMed Google Scholar
  105. Rikkinen, J. What's behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4, 1–239 (1995).
    Google Scholar
  106. Garvie, L. A. J., Knauth, L. P., Bungartz, F., Klonowski, S. & Nash, T. H. 3rd. Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta. Naturwissenscaften 95, 705–712 (2008).
    Article CAS Google Scholar

Download references