Landis, D. M., Hall, A. K., Weinstein, L. A. & Reese, T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron1, 201–209 (1988). ArticleCASPubMed Google Scholar
Hirokawa, N., Sobue, K., Kanda, K., Harada, A. & Yorifuji, H. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol.108, 111–126 (1989). ArticleCASPubMed Google Scholar
Landis, D. M. Membrane and cytoplasmic structure at synaptic junctions in the mammalian central nervous system. J. Electron Microsc. Tech.10, 129–151 (1988). ArticleCASPubMed Google Scholar
Burns, M. E. & Augustine, G. J. Synaptic structure and function: dynamic organization yields architectural precision. Cell83, 187–194 (1995). ArticleCASPubMed Google Scholar
Zampighi, G. A. & Fisher, R. S. Polyhedral protein cages encase synaptic vesicles and participate in their attachment to the active zone. J. Struct. Biol.119, 347–359 (1997). ArticleCASPubMed Google Scholar
Phillips, G. R. et al. The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron32, 63–77 (2001). ArticleCASPubMed Google Scholar
Burden, S. J. Building the vertebrate neuromuscular synapse. J. Neurobiol.53, 501–511 (2002). ArticleCASPubMed Google Scholar
Garner, C. C., Zhai, R. G., Gundelfinger, E. D. & Ziv, N. E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci.25, 243–251 (2002). ArticleCASPubMed Google Scholar
Broadie, K. S. & Richmond, J. E. Establishing and sculpting the synapse in Drosophila and C. elegans. Curr. Opin. Neurobiol.12, 491–498 (2002). ArticleCASPubMed Google Scholar
Katz, B. The Release of Neural Transmitter Substances (Thomas, Springfield, 1969). Google Scholar
Peters, A., Palay, S. L. & Webster, H. D. The Fine Structure of the Nervous System (Oxford Univ. Press. Oxford, 1991). Google Scholar
Dresbach, T., Qualmann, B., Kessels, M. M., Garner, C. C. & Gundelfinger, E. D. The presynaptic cytomatrix of brain synapses. Cell. Mol. Life Sci.58, 94–116 (2001). ArticleCASPubMed Google Scholar
Jarousse, N. & Kelly, R. B. Endocytotic mechanisms in synapses. Curr. Opin. Cell Biol.13, 461–469 (2001). ArticleCASPubMed Google Scholar
Richmond, J. E. & Broadie, K. S. The synaptic vesicle cycle: exocytosis and endocytosis in Drosophila and C. elegans. Curr. Opin. Neurobiol.12, 499–507 (2002). ArticleCASPubMed Google Scholar
Murthy, V. N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci.26, 701–728 (2003). ArticleCASPubMed Google Scholar
Gundelfinger, E. D., Kessels, M. M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Rev. Mol. Cell Biol.4, 127–139 ( 2003). ArticleCAS Google Scholar
Aravanis, A. M., Pyle, J. L. & Tsien, R. W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature423, 643–647 (2003). ArticleCASPubMed Google Scholar
Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature423, 607–613 (2003). ArticleCASPubMed Google Scholar
Heuser, J. E. & Reese, T. S. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol.88, 564–580 (1981). ArticleCASPubMed Google Scholar
Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci.22, 389–442 (1999). ArticleCASPubMed Google Scholar
Young, S. H. & Poo, M. M. Spontaneous release of transmitter from growth cones of embryonic neurones. Nature305, 634–637 (1983). ArticleCASPubMed Google Scholar
Hume, R. I., Role, L. W. & Fischbach, G. D. Acetylcholine release from growth cones detected with patches of acetylcholine receptor-rich membranes. Nature305, 632–634 (1983). References 26 and 27 show that growth cones secrete neurotransmitter before they make contact with targets. ArticleCASPubMed Google Scholar
Haydon, P. G. & Zoran, M. J. Formation and modulation of chemical connections: evoked acetylcholine release from growth cones and neurites of specific identified neurons. Neuron2, 1483–1490 (1989). ArticleCASPubMed Google Scholar
Yao, W. D., Rusch, J., Poo, M. & Wu, C. F. Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: effects of cAMP-pathway mutations. J. Neurosci.20, 2626–2637 (2000). ArticleCASPubMed Google Scholar
Diefenbach, T. J., Guthrie, P. B., Stier, H., Billups, B. & Kater, S. B. Membrane recycling in the neuronal growth cone revealed by FM1-43 labeling. J. Neurosci.19, 9436–9444 (1999). ArticleCASPubMed Google Scholar
Liou, J. C., Chen, Y. H. & Fu, W. M. Target-dependent regulation of acetylcholine secretion at developing motoneurons in Xenopus cell cultures. J. Physiol. (Lond.)517, 721–730 (1999). ArticleCAS Google Scholar
Jontes, J. D., Buchanan, J. & Smith, S. J. Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nature Neurosci.3, 231–237 (2000). ArticleCASPubMed Google Scholar
Ahmari, S. E., Buchanan, J. & Smith, S. J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci.3, 445–451 (2000). This study demonstrates that nascent presynaptic boutons contain clusters of tubulovesicular, pleomorphic and dense-core vesicles (seeFig. 1). ArticleCASPubMed Google Scholar
Friedman, H. V., Bresler, T., Garner, C. C. & Ziv, N. E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron27, 57–69 (2000). These data show that functional active zone formation can be rapid, occurring within less than 30 minutes of initial axo-dendritic contact. ArticleCASPubMed Google Scholar
Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nature Neurosci.4, 1093–1101 (2001). ArticleCASPubMed Google Scholar
Sun, Y. A. & Poo, M. M. Evoked release of acetylcholine from the growing embryonic neuron. Proc. Natl Acad Sci. USA84, 2540–2544 (1987). ArticleCASPubMed Google Scholar
Matteoli, M., Takei, K., Perin, M. S., Sudhof, T. C. & De Camilli, P. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J. Cell Biol.117, 849–861 (1992). ArticleCASPubMed Google Scholar
Kraszewski, K. et al. Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin. J. Neurosci.15, 4328–4342 (1995). ArticleCASPubMed Google Scholar
Dai, Z. & Peng, H. B. Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis. Mol. Cell. Neurosci.7, 443–452 (1996). ArticleCASPubMed Google Scholar
Antonov, I., Chang, S., Zakharenko, S. & Popov, S. V. Distribution of neurotransmitter secretion in growing axons. Neuroscience90, 975–984 (1999). ArticleCASPubMed Google Scholar
Zakharenko, S., Chang, S., O'Donoghue, M. & Popov, S. V. Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis. J. Cell Biol.144, 507–518 (1999). References 37–41 describe the ability of synaptic vesicles to recycle along the length of developing axons. ArticleCASPubMedPubMed Central Google Scholar
Krueger, S. R., Kolar, A. & Fitzsimonds, R. M. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron40, 945–957 (2003). Data indicate that functional 'orphan' active zones can exist in culture without a postsynaptic partner. ArticleCASPubMed Google Scholar
Galli, T., Garcia, E. P., Mundigl, O., Chilcote, T. J. & De Camilli, P. v- and t-SNAREs in neuronal exocytosis: a need for additional components to define sites of release. Neuropharmacology34, 1351–1360 (1995). ArticleCASPubMed Google Scholar
Garcia, E. P., McPherson, P. S., Chilcote, T. J., Takei, K. & De Camilli, P. rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J. Cell Biol.129, 105–120 (1995). ArticleCASPubMed Google Scholar
Burry, R. W. Presynaptic elements on artificial surfaces. A model for the study of development and regeneration of synapses. Neurochem. Pathol.5, 345–360 (1986). ArticleCASPubMed Google Scholar
Anderson, M. J., Champaneria, S. & Swenarchuk, L. E. Synaptic differentiation can be evoked by polymer microbeads that mimic localized pericellular proteolysis by removing proteins from adjacent surfaces. Dev. Biol.147, 464–479 (1991). ArticleCASPubMed Google Scholar
Dai, Z. & Peng, H. B. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J. Neurosci.15, 5466–5475 (1995). ArticleCASPubMed Google Scholar
Peng, H. B., Markey, D. R., Muhlach, W. L. & Pollack, E. D. Development of presynaptic specializations induced by basic polypeptide-coated latex beads in spinal cord cultures. Synapse1, 10–19 (1987). ArticleCASPubMed Google Scholar
DiGregorio, D. A., Negrete, O., Jeromin, A., Peng, H. B. & Vergara, J. L. Contact-dependent aggregation of functional Ca2+ channels, synaptic vesicles and postsynaptic receptors in active zones of a neuromuscular junction. Eur. J. Neurosci.14, 533–546 (2001). ArticleCASPubMed Google Scholar
Chow, I. & Poo, M. M. Release of acetylcholine from embryonic neurons upon contact with muscle cell. J. Neurosci.5, 1076–1082 (1985). ArticleCASPubMed Google Scholar
Vaughn, J. E. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse3, 255–285 (1989). An excellent review of the morphological changes that occur during nascent synapse formation. It also provides insightful suggestions as to mechanisms of synaptogenesis. ArticleCASPubMed Google Scholar
Jontes, J. D. & Smith, S. J. Filopodia, spines, and the generation of synaptic diversity. Neuron27, 11–14 (2000). ArticleCASPubMed Google Scholar
Bonhoeffer, T. & Yuste, R. Spine motility. Phenomenology, mechanisms, and function. Neuron35, 1019–1027 (2002). ArticleCASPubMed Google Scholar
Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron17, 91–102 (1996). ArticleCASPubMed Google Scholar
Okabe, S., Miwa, A. & Okado, H. Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J. Neurosci.21, 6105–6114 (2001). ArticleCASPubMed Google Scholar
Marrs, G. S., Green, S. H. & Dailey, M. E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nature Neurosci.4, 1006–1013 (2001). ArticleCASPubMed Google Scholar
Niell, C. M., Meyer, M. P. & Smith, S. J. In vivo imaging of synapse formation on a growing dendritic arbor. Nature Neurosci.7, 254–260 (2004). ArticleCASPubMed Google Scholar
Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci.16, 2983–2994 (1996). ArticleCASPubMed Google Scholar
Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci.18, 8900–8911 (1998). References 54–59 establish a fundamental role for dendritic filopodia in the initiation of synaptogenesis. ArticleCASPubMed Google Scholar
Fiala, J. C., Allwardt, B. & Harris, K. M. Dendritic spines do not split during hippocampal LTP or maturation. Nature Neurosci.5, 297–298 (2002). ArticleCASPubMed Google Scholar
Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl Acad. Sci. USA96, 13438–13443 (1999). ArticleCASPubMed Google Scholar
Lendvai, B., Stern, E. A., Chen, B. & Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature404, 876–881 (2000). ArticleCASPubMed Google Scholar
Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature420, 788–794 (2002). ArticleCASPubMed Google Scholar
Portera-Cailliau, C., Pan, D. T. & Yuste, R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J. Neurosci.23, 7129–7142 (2003). ArticleCASPubMed Google Scholar
Ritzenthaler, S., Suzuki, E. & Chiba, A. Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nature Neurosci.3, 1012–1017 (2000). ArticleCASPubMed Google Scholar
Ritzenthaler, S. & Chiba, A. Myopodia (postsynaptic filopodia) participate in synaptic target recognition. J. Neurobiol.55, 31–40 (2003). ArticlePubMed Google Scholar
Dailey, M. E., Buchanan, J., Bergles, D. E. & Smith, S. J. Mossy fiber growth and synaptogenesis in rat hippocampal slices in vitro. J. Neurosci.14, 1060–1078 (1994). ArticleCASPubMed Google Scholar
Bastmeyer, M. & O'Leary, D. D. Dynamics of target recognition by interstitial axon branching along developing cortical axons. J. Neurosci.16, 1450–1459 (1996). ArticleCASPubMed Google Scholar
Chang, S. & De Camilli, P. Glutamate regulates actin-based motility in axonal filopodia. Nature Neurosci.4, 787–793 (2001). ArticleCASPubMed Google Scholar
Tashiro, A., Dunaevsky, A., Blazeski, R., Mason, C. A. & Yuste, R. Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: a two-step model of synaptogenesis. Neuron38, 773–784 (2003). ArticleCASPubMed Google Scholar
Yoshihara, M., Rheuben, M. B. & Kidokoro, Y. Transition from growth cone to functional motor nerve terminal in Drosophila embryos. J. Neurosci.17, 8408–8426 (1997). ArticleCASPubMed Google Scholar
Ahmari, S. E. & Smith, S. J. Knowing a nascent synapse when you see it. Neuron34, 333–336 (2002). ArticleCASPubMed Google Scholar
Dyson, S. E. & Jones, D. G. Quantitation of terminal parameters and their inter-relationships in maturing central synapses: a perspective for experimental studies. Brain Res.183, 43–59 (1980). ArticleCASPubMed Google Scholar
Blue, M. E. & Parnavelas, J. G. The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J. Neurocytol.12, 697–712 (1983). ArticleCASPubMed Google Scholar
Weber, A. J. & Kalil, R. E. Development of corticogeniculate synapses in the cat. J. Comp. Neurol.264, 171–192 (1987). ArticleCASPubMed Google Scholar
Renger, J. J., Egles, C. & Liu, G. A developmental switch in neurotransmitter flux enhances synaptic efficacy by affecting AMPA receptor activation. Neuron29, 469–484 (2001). ArticleCASPubMed Google Scholar
Basarsky, T. A., Parpura, V. & Haydon, P. G. Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J. Neurosci.14, 6402–6411 (1994). ArticleCASPubMed Google Scholar
Verderio, C., Coco, S., Fumagalli, G. & Matteoli, M. Calcium-dependent glutamate release during neuronal development and synaptogenesis: different involvement of omega-agatoxin IVA- and omega-conotoxin GVIA-sensitive channels. Proc. Natl Acad. Sci. USA92, 6449–6453 (1995). ArticleCASPubMed Google Scholar
Verderio, C. et al. Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons. J. Neurosci.19, 6723–6732 (1999). ArticleCASPubMed Google Scholar
Scholz, K. P. & Miller, R. J. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons. J. Neurosci.15, 4612–4617 (1995). ArticleCASPubMed Google Scholar
Coco, S., Verderio, C., De Camilli, P. & Matteoli, M. Calcium dependence of synaptic vesicle recycling before and after synaptogenesis. J. Neurochem.71, 1987–1992 (1998). References 78–81 demonstrate that synaptic vesicle recycling along axons is functionally different to that at synapses. ArticleCASPubMed Google Scholar
Iwasaki, S. & Takahashi, T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J. Physiol. (Lond.)509, 419–423 (1998). ArticleCAS Google Scholar
Vance, C. L. et al. Differential expression and association of calcium channel α1B and β subunits during rat brain ontogeny. J. Biol. Chem.273, 14495–14502 (1998). ArticleCASPubMed Google Scholar
Rosato Siri, M. D. & Uchitel, O. D. Calcium channels coupled to neurotransmitter release at neonatal rat neuromuscular junctions. J. Physiol. (Lond.)514, 533–540 (1999). Article Google Scholar
Pravettoni, E. et al. Different localizations and functions of L-type and N-type calcium channels during development of hippocampal neurons. Dev. Biol.227, 581–594 (2000). ArticleCASPubMed Google Scholar
Iwasaki, S., Momiyama, A., Uchitel, O. D. & Takahashi, T. Developmental changes in calcium channel types mediating central synaptic transmission. J. Neurosci.20, 59–65 (2000). ArticleCASPubMed Google Scholar
Bolshakov, V. Y. & Siegelbaum, S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science269, 1730–1734 (1995). ArticleCASPubMed Google Scholar
Dumas, T. C. & Foster, T. C. Developmental increase in CA3-CA1 presynaptic function in the hippocampal slice. J. Neurophysiol.73, 1821–1828 (1995). ArticleCASPubMed Google Scholar
Choi, S. & Lovinger, D. M. Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc. Natl Acad. Sci. USA94, 2665–2670 (1997). ArticleCASPubMed Google Scholar
Thomson, A. M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci.23, 305–312 (2000). ArticleCASPubMed Google Scholar
Gasparini, S., Saviane, C., Voronin, L. L. & Cherubini, E. Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc. Natl Acad. Sci. USA97, 9741–9746 (2000). ArticleCASPubMed Google Scholar
Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature411, 317–321 (2001). ArticleCASPubMed Google Scholar
Iwasaki, S. & Takahashi, T. Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. J. Physiol. (Lond.)534, 861–871 (2001). ArticleCAS Google Scholar
Brenowitz, S. & Trussell, L. O. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. J. Neurosci.21, 9487–9498 (2001). ArticleCASPubMed Google Scholar
Fischbach, G. D. Synaptic potentials recorded in cell cultures of nerve and muscle. Science169, 1331–1333 (1970). ArticleCASPubMed Google Scholar
Crain, S. M. Bioelectric interactions between cultured fetal rodent spinal cord and skeletal muscle after innervation in vitro. J. Exp. Zool.173, 353–369 (1970). ArticleCASPubMed Google Scholar
Kidokoro, Y. & Yeh, E. Initial synaptic transmission at the growth cone in Xenopus nerve-muscle cultures. Proc. Natl Acad. Sci. USA79, 6727–6731 (1982). ArticleCASPubMed Google Scholar
Xie, Z. P. & Poo, M. M. Initial events in the formation of neuromuscular synapse: rapid induction of acetylcholine release from embryonic neuron. Proc. Natl Acad. Sci. USA83, 7069–7073 (1986). ArticleCASPubMed Google Scholar
Dai, Z. & Peng, H. B. Elevation in presynaptic Ca2+ level accompanying initial nerve-muscle contact in tissue culture. Neuron10, 827–837 (1993). ArticleCASPubMed Google Scholar
Evers, J., Laser, M., Sun, Y. A., Xie, Z. P. & Poo, M. M. Studies of nerve-muscle interactions in Xenopus cell culture: analysis of early synaptic currents. J. Neurosci.9, 1523–1539 (1989). ArticleCASPubMed Google Scholar
Buchanan, J., Sun, Y. A. & Poo, M. M. Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts. J. Neurosci.9, 1540–1554 (1989). ArticleCASPubMed Google Scholar
Takahashi, T., Nakajima, Y., Hirosawa, K., Nakajima, S. & Onodera, K. Structure and physiology of developing neuromuscular synapses in culture. J. Neurosci.7, 473–481 (1987). References 101 and 102 correlate the ultrastructural changes in nascent synapses with the onset of synaptic activity. ArticleCASPubMed Google Scholar
Mozhayeva, M. G., Sara, Y., Liu, X. & Kavalali, E. T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci.22, 654–665 (2002). ArticleCASPubMed Google Scholar
Okabe, S., Kim, H. D., Miwa, A., Kuriu, T. & Okado, H. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nature Neurosci.2, 804–811 (1999). ArticleCASPubMed Google Scholar
Wolff, J. R., Laskawi, R., Spatz, W. B. & Missler, M. Structural dynamics of synapses and synaptic components. Behav. Brain Res.66, 13–20 (1995). ArticleCASPubMed Google Scholar
De Camilli, P., Benfenati, F., Valtorta, F. & Greengard, P. The synapsins. Annu. Rev. Cell Biol.6, 433–460 (1990). ArticleCASPubMed Google Scholar
Lu, B. et al. Expression of synapsin I correlates with maturation of the neuromuscular synapse. Neuroscience.74, 1087–1097 (1996). ArticleCASPubMed Google Scholar
Lu, B., Greengard, P. & Poo, M. M. Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron8, 521–529 (1992). ArticleCASPubMed Google Scholar
Valtorta, F. et al. Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis. Eur. J. Neurosci.7, 261–270 (1995). ArticleCASPubMed Google Scholar
Nakata, T. et al. Predominant and developmentally regulated expression of dynamin in neurons. Neuron7, 461–469 (1991). ArticleCASPubMed Google Scholar
Faire, K., Trent, F., Tepper, J. M. & Bonder, E. M. Analysis of dynamin isoforms in mammalian brain: dynamin-1 expression is spatially and temporally regulated during postnatal development. Proc. Natl Acad. Sci. USA89, 8376–8380 (1992). ArticleCASPubMed Google Scholar
Bergmann, M., Grabs, D. & Rager, G. Developmental expression of dynamin in the chick retinotectal system. J. Histochem. Cytochem.47, 1297–1306 (1999). ArticleCASPubMed Google Scholar
Grabs, D., Bergmann, M. & Rager, G. Developmental expression of amphiphysin in the retinotectal system of the chick: from mRNA to protein. Eur. J. Neurosci.12, 1545–1553 (2000). ArticleCASPubMed Google Scholar
Mundigl, O. et al. Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J. Neurosci.18, 93–103 (1998). ArticleCASPubMed Google Scholar
Noakes, P. G., Chin, D., Kim, S. S., Liang, S. & Phillips, W. D. Expression and localisation of dynamin and syntaxin during neural development and neuromuscular synapse formation. J. Comp. Neurol.410, 531–440 (1999). ArticleCASPubMed Google Scholar
Fletcher, T. L., De Camilli, P. & Banker, G. Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J. Neurosci.14, 6695–6706 (1994). ArticleCASPubMed Google Scholar
Mohrmann, R., Werner, M., Hatt, H. & Gottmann, K. Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci.19, 10004–10013 (1999). ArticleCASPubMed Google Scholar
Niell, C. M. & Smith, S. J. Live optical imaging of nervous system development. Annu. Rev. Physiol.66, 771–798 (2004). ArticleCASPubMed Google Scholar
Umeda, T. & Okabe, S. Visualizing synapse formation and remodeling: recent advances in real-time imaging of CNS synapses. Neurosci. Res.40, 291–300 (2001). ArticleCASPubMed Google Scholar
Colicos, M. A., Collins, B. E., Sailor, M. J. & Goda, Y. Remodeling of synaptic actin induced by photoconductive stimulation. Cell107, 605–616 (2001). ArticleCASPubMed Google Scholar
Bresler, T. et al. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J. Neurosci. (in the press).
Benson, D. L., Colman, D. R. & Huntley, G. W. Molecules, maps and synapse specificity. Nature Rev. Neurosci.2, 899–909 (2001). ArticleCAS Google Scholar
Kaether, C., Skehel, P. & Dotti, C. G. Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol. Biol. Cell11, 1213–1224 (2000). ArticleCASPubMedPubMed Central Google Scholar
De Paola, V., Arber, S. & Caroni, P. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nature Neurosci.6, 491–500 (2003). An example of synaptic-activity-regulated turnover of presynaptic boutons/synaptic vesicle clusters. ArticleCASPubMed Google Scholar
Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol.140, 659–674 (1998). ArticleCASPubMedPubMed Central Google Scholar
Hopf, F. W., Waters, J., Mehta, S. & Smith, S. J. Stability and plasticity of developing synapses in hippocampal neuronal cultures. J. Neurosci.22, 775–781 (2002). ArticleCASPubMed Google Scholar
Booj, S., Larsson, P. A., Dahllof, A. G. & Dahlstrom, A. Axonal transport of synapsin I- and cholinergic synaptic vesicle-like material; further immunohistochemical evidence for transport of axonal cholinergic transmitter vesicles in motor neurons. Acta Physiol. Scand.128, 155–165 (1986). ArticleCASPubMed Google Scholar
Fletcher, T. L., Cameron, P., De Camilli, P. & Banker, G. The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J. Neurosci.11, 1617–1626 (1991). ArticleCASPubMed Google Scholar
Sabo, S. L. & McAllister, A. K. Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia. Nature Neurosci.6, 1264–1269 (2003). ArticleCASPubMed Google Scholar
Roos, J. & Kelly, R. B. Preassembly and transport of nerve terminals: a new concept of axonal transport. Nature Neurosci.3, 415–417 (2000). ArticleCASPubMed Google Scholar
Zhai, R. G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron29, 131–143 (2001). This paper describes the isolation of a 80 nm dense-core vesicle carrying active zone proteins. ArticleCASPubMed Google Scholar
Shapira, M. et al. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron38, 237–252 (2003). This paper indicates that active zones are formed from a small number of precursor vesicles. ArticleCASPubMed Google Scholar
Kim, S. et al. The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J. Biol. Chem.278, 6291–6300 (2003). ArticleCASPubMed Google Scholar
Ohtsuka, T. et al. Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J. Cell Biol.158, 577–590 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sytnyk, V. et al. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J. Cell Biol.159, 649–661 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science291, 657–661 (2001). This paper demonstrates the crucial role of glia in synaptogenesis. ArticleCASPubMed Google Scholar
Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA50, 703–710 (1963). ArticleCASPubMed Google Scholar
Craig, A. M. & Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nature Neurosci.4, 569–578 (2001). ArticleCASPubMed Google Scholar
Korkotian, E. & Segal, M. Regulation of dendritic spine motility in cultured hippocampal neurons. J. Neurosci.21, 6115–6124 (2001). ArticleCASPubMed Google Scholar
Nikonenko, I., Jourdain, P. & Muller, D. Presynaptic remodeling contributes to activity-dependent synaptogenesis. J. Neurosci.23, 8498–8505 (2003). ArticleCASPubMed Google Scholar
Renger, J. J., Ueda, A., Atwood, H. L., Govind, C. K. & Wu, C. F. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. J. Neurosci.20, 3980–3992 (2000). ArticleCASPubMed Google Scholar
Zhang, W. & Benson, D. L. Stages of synapse development defined by dependence on F-actin. J. Neurosci.21, 5169–5181 (2001). ArticleCASPubMed Google Scholar
Scheiffele, P. Cell–cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci.26, 485–508 (2003). ArticleCASPubMed Google Scholar
Goda, Y. & Davis, G. W. Mechanisms of synapse assembly and disassembly. Neuron40, 243–264 (2003). ArticleCASPubMed Google Scholar
Fannon, A. M. & Colman, D. R. A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron17, 423–434 (1996). ArticleCASPubMed Google Scholar
Shapiro, L. & Colman, D. R. The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron23, 427–430 (1999). ArticleCASPubMed Google Scholar
Phillips, G. R. et al. γ-Protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. J. Neurosci.23, 5096–5104 (2003). ArticleCASPubMed Google Scholar
Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol.135, 767–779 (1996). ArticleCASPubMed Google Scholar
Bruses, J. L. Cadherin-mediated adhesion at the interneuronal synapse. Curr. Opin. Cell Biol.12, 593–597 (2000). ArticleCASPubMed Google Scholar
Nishimura, W., Yao, I., Iida, J., Tanaka, N. & Hata, Y. Interaction of synaptic scaffolding molecule and β-catenin. J. Neurosci.22, 757–765 (2002). ArticleCASPubMed Google Scholar
Benson, D. L. & Tanaka, H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci.18, 6892–6904 (1998). ArticleCASPubMed Google Scholar
Huntley, G. W. & Benson, D. L. Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections. J. Comp. Neurol.407, 453–471 (1999). ArticleCASPubMed Google Scholar
Manabe, T. et al. Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol. Cell. Neurosci.15, 534–546 (2000). ArticleCASPubMed Google Scholar
Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron35, 77–89 (2002). ArticleCASPubMed Google Scholar
Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell101, 657–669 (2000). References 155, 176 and 180 demonstrate the potent activity of neuroligin and SynCAM in the induction of active zone formation. ArticleCASPubMed Google Scholar
Gil, O. D., Needleman, L. & Huntley, G. W. Developmental patterns of cadherin expression and localization in relation to compartmentalized thalamocortical terminations in rat barrel cortex. J. Comp. Neurol.453, 372–388 (2002). ArticleCASPubMed Google Scholar
Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol.1, 23–29 (2000). ArticleCAS Google Scholar
Dunaevsky, A. & Connor, E. A. F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J. Neurosci.20, 6007–6012 (2000). ArticleCASPubMed Google Scholar
Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA99, 14476–14481 (2002). ArticleCASPubMed Google Scholar
Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nature Neurosci.6, 127–135 (2003). ArticleCASPubMed Google Scholar
Job, C. & Lagnado, L. Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells. J. Cell Biol.143, 1661–1672 (1998). ArticleCASPubMedPubMed Central Google Scholar
Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science259, 780–785 (1993). ArticleCASPubMed Google Scholar
Pieribone, V. A. et al. Distinct pools of synaptic vesicles in neurotransmitter release. Nature375, 493–497 (1995). ArticleCASPubMed Google Scholar
Ryan, T. A., Li, L., Chin, L. S., Greengard, P. & Smith, S. J. Synaptic vesicle recycling in synapsin I knock-out mice. J. Cell Biol.134, 1219–1227 (1996). ArticleCASPubMed Google Scholar
Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature375, 488–493 (1995). ArticleCASPubMed Google Scholar
Jovanovic, J. N. et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl Acad. Sci. USA93, 3679–3683 (1996). ArticleCASPubMed Google Scholar
Yamagata, Y., Jovanovic, J. N., Czernik, A. J., Greengard, P. & Obata, K. Bidirectional changes in synapsin I phosphorylation at MAP kinase-dependent sites by acute neuronal excitation in vivo. J. Neurochem.80, 835–842 (2002). ArticleCASPubMed Google Scholar
Chi, P., Greengard, P. & Ryan, T. A. Synapsin dispersion and reclustering during synaptic activity. Nature Neurosci.4, 1187–1193 (2001). A beautiful demonstation of how activity affects the distribution of the presynaptic molecule synapsin. ArticleCASPubMed Google Scholar
Chi, P., Greengard, P. & Ryan, T. A. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron38, 69–78 (2003). ArticleCASPubMed Google Scholar
Moscoso, L. M., Cremer, H. & Sanes, J. R. Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J. Neurosci.18, 1465–1477 (1998). ArticleCASPubMed Google Scholar
Rafuse, V. F., Polo-Parada, L. & Landmesser, L. T. Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. J. Neurosci.20, 6529–6539 (2000). ArticleCASPubMed Google Scholar
Polo-Parada, L., Bose, C. M. & Landmesser, L. T. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron32, 815–828 (2001). ArticleCASPubMed Google Scholar
Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science297, 1525–1531 (2002). ArticleCASPubMed Google Scholar
Nguyen, T. & Sudhof, T. C. Binding properties of neuroligin 1 and neurexin 1β reveal function as heterophilic cell adhesion molecules. J. Biol. Chem.272, 26032–26039 (1997). ArticleCASPubMed Google Scholar
Ichtchenko, K. et al. Neuroligin 1: a splice site-specific ligand for β-neurexins. Cell81, 435–443 (1995). ArticleCASPubMed Google Scholar
Scholl, F. G. & Scheiffele, P. Making connections: cholinesterase-domain proteins in the CNS. Trends Neurosci.26, 618–624 (2003). ArticleCASPubMed Google Scholar
Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nature Neurosci.6, 708–716 (2003). ArticleCASPubMed Google Scholar
Hata, Y., Butz, S. & Sudhof, T. C. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J. Neurosci.16, 2488–2494 (1996). ArticleCASPubMed Google Scholar
Biederer, T. & Sudhof, T. C. CASK and protein 4.1 support F-actin nucleation on neurexins. J. Biol. Chem.276, 47869–47876 (2001). ArticleCASPubMed Google Scholar
Butz, S., Okamoto, M. & Sudhof, T. C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell94, 773–782 (1998). ArticleCASPubMed Google Scholar
Borg, J. P. et al. Molecular analysis of the X11-mLin-2/CASK complex in brain. J. Neurosci.19, 1307–1316 (1999). ArticleCASPubMed Google Scholar
Maximov, A., Sudhof, T. C. & Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem.274, 24453–24456 (1999). ArticleCASPubMed Google Scholar
Spafford, J. D. et al. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J. Biol. Chem.278, 4258–4267 (2003). ArticleCASPubMed Google Scholar
Missler, M., Fernandez-Chacon, R. & Sudhof, T. C. The making of neurexins. J. Neurochem.71, 1339–1347 (1998). ArticleCASPubMed Google Scholar
Missler, M. et al. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature424, 939–948 (2003). This paper demonstrates a crucial role for α-neurexin in the localization of calcium channels to active zones. ArticleCAS Google Scholar
Davletov, B. A., Krasnoperov, V., Hata, Y., Petrenko, A. G. & Sudhof, T. C. High affinity binding of α-latrotoxin to recombinant neurexin I α. J. Biol. Chem.270, 23903–23905 (1995). ArticleCASPubMed Google Scholar
Missler, M., Hammer, R. E. & Sudhof, T. C. Neurexophilin binding to α-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J. Biol. Chem.273, 34716–34723 (1998). ArticleCASPubMed Google Scholar
Biederer, T. & Sudhof, T. C. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem.275, 39803–39806 (2000). ArticleCASPubMed Google Scholar
Petrenko, A. G. et al. Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature353, 65–68 (1991). ArticleCASPubMed Google Scholar
Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature415, 321–326 (2002). ArticleCASPubMed Google Scholar
Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Sudhof, T. C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature388, 593–598 (1997). ArticleCASPubMed Google Scholar
Wang, Y., Liu, X., Biederer, T. & Sudhof, T. C. A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proc. Natl Acad. Sci. USA99, 14464–14469 (2002). ArticleCASPubMed Google Scholar
Ko, J., Na, M., Kim, S., Lee, J. R. & Kim, E. Interaction of the ERC family of RIM-binding proteins with the liprin-α family of multidomain proteins. J. Biol. Chem.278, 42377–42385 (2003). ArticleCASPubMed Google Scholar
Takao-Rikitsu, E. et al. Physical and functional interaction of the active zone proteins, CAST, RIM1 and Bassoon, in neurotransmitter release. J. Cell Biol.164, 301–311 (2004). ArticleCASPubMedPubMed Central Google Scholar
Altrock, W. D. et al. Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron37, 787–800 (2003). ArticleCASPubMed Google Scholar
Okabe, S. Birth, growth and elimination of a single synapse. Anat. Sci. Int.77, 203–210 (2002). ArticlePubMed Google Scholar
Li, Z. & Sheng, M. Some assembly required: the development of neuronal synapses. Nature Rev. Mol. Cell Biol.4, 833–841 (2003). ArticleCAS Google Scholar
Atwood, H. L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nature Rev. Neurosci.3, 497–516 (2002). ArticleCAS Google Scholar
Slezak, M. & Pfrieger, F. W. New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci.26, 531–535 (2003). ArticleCASPubMed Google Scholar