Friedman, T. B. & Griffith, A. J. Human nonsyndromic sensorineural deafness. Annu. Rev. Genomics Hum. Genet.4, 341–402 (2003). ArticleCASPubMed Google Scholar
Shotwell, S. L., Jacobs, R. & Hudspeth, A. J. Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann. NY Acad. Sci.374, 1–10 (1981). ArticleCASPubMed Google Scholar
Furness, D. N., Katori, Y., Mahendrasingam, S. & Hackney, C. M. Differential distribution of β- and γ-actin in guinea-pig cochlear sensory and supporting cells. Hear. Res.207, 22–34 (2005). ArticleCASPubMed Google Scholar
Tilney, L. G. & Tilney, M. S. Functional organization of the cytoskeleton. Hear. Res.22, 55–77 (1986). ArticleCASPubMed Google Scholar
Pataky, F., Pironkova, R. & Hudspeth, A. J. Radixin is a constituent of stereocilia in hair cells. Proc. Natl Acad. Sci. USA101, 2601–2606 (2004). ArticleCASPubMedPubMed Central Google Scholar
Slepecky, N. & Chamberlain, S. C. Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells. Hear. Res.20, 245–260 (1985). ArticleCASPubMed Google Scholar
Hackney, C. M., Karkanevatos, A. & Furness, D. N. Distribution of tropomyosin in guinea pig cochlear hair cells. J. Physiol. (Lond.)527, 92P (2000). Google Scholar
Schneider, M. E., Belyantseva, I. A., Azevedo, R. B. & Kachar, B. Rapid renewal of auditory hair bundles. Nature418, 837–838 (2002). ArticleCASPubMed Google Scholar
Rzadzinska, A. K., Schneider, M. E., Davies, C., Riordan, G. P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol.164, 887–897 (2004). Shows treadmilling of actin along the stereocilia at a rate proportional to their length and proposes that myosin XVa that is localized at stereociliary tips regulates treadmilling rate and stereociliary length. ArticleCASPubMedPubMed Central Google Scholar
Belyantseva, I. A. et al. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nature Cell Biol.7, 148–156 (2005). ArticleCASPubMed Google Scholar
Mburu, P. et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nature Genet.34, 421–428 (2003). ArticleCASPubMed Google Scholar
Pickles, J. O., Comis, S. D. & Osborne, M. P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear. Res.15, 103–112 (1984). ArticleCASPubMed Google Scholar
Furness, D. N. & Hackney, C. M. Cross-links between stereocilia in the guinea pig cochlea. Hear. Res.18, 177–188 (1985). ArticleCASPubMed Google Scholar
Goodyear, R. J., Marcotti, W., Kros, C. J. & Richardson, G. P. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J. Comp. Neurol.485, 75–85 (2005). ArticlePubMed Google Scholar
Flock, A., Flock, B. & Murray, E. Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol.83, 85–91 (1977). ArticleCASPubMed Google Scholar
Boeda, B. et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair bundle. EMBO J.21, 6689–6699 (2002). Evidence that interactions between three Usher I gene products are important for hair bundle morphogenesis. ArticleCASPubMedPubMed Central Google Scholar
Kros, C. J. et al. Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nature Neurosci.5, 41–47 (2002). ArticleCASPubMed Google Scholar
Assad, J. A., Shepherd, G. M. & Corey, D. P. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron7, 985–994 (1991). ArticleCASPubMed Google Scholar
Crawford, A. C., Evans, M. G. & Fettiplace, R. The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J. Physiol. (Lond.)434, 369–398 (1991). ArticleCAS Google Scholar
Denk, W., Holt, J. R., Shepherd, G. M. & Corey, D. P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron15, 1311–1321 (1995). ArticleCASPubMed Google Scholar
Lumpkin, E. A. & Hudspeth, A. J. Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proc. Natl Acad. Sci. USA92, 10297–10301 (1995). ArticleCASPubMedPubMed Central Google Scholar
Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature428, 950–955 (2004). ArticleCASPubMed Google Scholar
Söllner, C. et al. Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature428, 955–959 (2004). ArticlePubMedCAS Google Scholar
Michel, V. et al. Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Dev. Biol.280, 281–294 (2005). ArticleCASPubMed Google Scholar
Lagziel, A. et al. Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development. Dev. Biol.280, 295–306 (2005). ArticleCASPubMed Google Scholar
Robles, L. & Ruggero, M. A. Mechanics of the mammalian cochlea. Physiol. Rev.81, 1305–1352 (2001). Comprehensive review of the measurements and mechanisms of the mechanical frequency tuning of the basilar membrane. ArticleCASPubMed Google Scholar
Hu, X., Evans, B. N. & Dallos, P. Direct visualization of organ of Corti kinematics in a hemicochlea. J. Neurophysiol.82, 2798–2807 (1999). ArticleCASPubMed Google Scholar
Ohmori, H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J. Physiol. (Lond.)359, 189–217 (1985). ArticleCAS Google Scholar
Ricci, A. J. & Fettiplace, R. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J. Physiol. (Lond.)506, 159–173 (1998). ArticleCAS Google Scholar
Farris, H. E., LeBlanc, C. L., Goswami, J. & Ricci, A. J. Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J. Physiol. (Lond.)558, 769–792 (2004). ArticleCAS Google Scholar
Ricci, A. J., Crawford, A. C. & Fettiplace, R. Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron40, 983–990 (2003). Uses the destruction of tip links with BAPTA to record single MET channels, showing their variation in conductance along the cochlea. ArticleCASPubMed Google Scholar
Géléoc, G. S., Lennan, G. W., Richardson, G. P. & Kros, C. J. A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc. R. Soc. Lond. B264, 611–621 (1997). Article Google Scholar
Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci.3, 962–976 (1983). CASPubMedPubMed Central Google Scholar
Crawford, A. C., Evans, M. G. & Fettiplace, R. Activation and adaptation of transducer currents in turtle hair cells. J. Physiol. (Lond.)419, 405–434 (1989). ArticleCAS Google Scholar
Ricci, A. J., Wu, Y. -C. & Fettiplace, R. The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J. Neurosci.18, 8261–8277 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kros, C. J., Rüsch, A. & Richardson, G. P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc. R. Soc. Lond. B249, 185–193 (1992). Reports the first use of an isolated mammalian cochlear preparation to record large transducer currents. ArticleCAS Google Scholar
Kennedy, H. J., Evans, M. G., Crawford, A. C. & Fettiplace, R. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nature Neurosci.6, 832–836 (2003). ArticleCASPubMed Google Scholar
He, D. Z. Z., Jia, S. & Dallos, P. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil cochlea. Nature429, 766–770 (2004). ArticleCASPubMed Google Scholar
Ricci, A. J., Kennedy, H. J., Crawford, A. C. & Fettiplace, R. The transduction channel filter in auditory hair cells. J. Neurosci.25, 7831–7839 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hackney, C. M., Mahendrasingam, S., Penn, A. & Fettiplace, R. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J. Neurosci.25, 7867–7875 (2005). ArticleCASPubMedPubMed Central Google Scholar
Martin, P., Bozovic, D., Choe, Y. & Hudspeth, A. J. Spontaneous oscillation by hair bundles of the bullfrog's sacculus. J. Neurosci.23, 4533–4548 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gillespie, P. G. & Cyr, J. L. Myosin-1c, the hair cell's adaptation motor. Annu. Rev. Physiol.66, 521–545 (2004). ArticleCASPubMed Google Scholar
Holt, J. R. et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell108, 371–381 (2002). Mutation of myosin-1c to confer selectivity to block by ADP analogues unequivocally shows the role of the motor protein in hair cell adaptation. ArticleCASPubMed Google Scholar
Pedersen, S. F., Owsianik, G. & Nilius, B. TRP channels: an overview. Cell Calcium38, 233–252 (2005). ArticleCASPubMed Google Scholar
Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature432, 723–730 (2004). Identification of the most plausible candidate for the long sought-after MET channel protein. ArticleCASPubMed Google Scholar
Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons is activated at cold temperatures. Cell112, 819–829 (2003). ArticleCASPubMed Google Scholar
Nagata, K., Duggan, A., Kumar, G. & Garcia-Anoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci.25, 4052–4061 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schaefer, M. Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch.451, 35–42 (2005). ArticleCASPubMed Google Scholar
Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl Acad. Sci. USA99, 14994–14999 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hirono, M., Denis, C. S., Richardson, G. P. & Gillespie, P. G. Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron44, 309–320 (2004). ArticleCASPubMed Google Scholar
Kachar, B., Parakka, l. M., Kurc, M., Zhao, Y. & Gillespie, P. G. High-resolution structure of hair-cell tip links. Proc. Natl Acad. Sci. USA97, 13336–13341 (2000). ArticleCASPubMedPubMed Central Google Scholar
Howard, J. & Hudspeth, A. J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron1, 189–199 (1988). First demonstration of and elegant theory for the contribution of MET channel gating to hair bundle mechanics. ArticleCASPubMed Google Scholar
Russell, I. J., Kössl, M. & Richardson, G. P. Nonlinear mechanical responses of mouse cochlear hair bundles. Proc. R. Soc. Lond. B250, 217–227 (1992). ArticleCAS Google Scholar
van Netten, S. M. & Kros, C. J. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics. Proc. R. Soc. Lond. B267, 1915–1923 (2000). ArticleCAS Google Scholar
Ricci, A. J., Crawford, A. C. & Fettiplace, R. Mechanisms of active hair bundle motion in auditory hair cells. J. Neurosci.22, 44–52 (2002). ArticleCASPubMedPubMed Central Google Scholar
Benser, M. E., Marquis, R. E. & Hudspeth, A. J. Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus. J. Neurosci.16, 5629–5643 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ricci, A. J., Crawford, A. C. & Fettiplace, R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J. Neurosci.20, 7131–7142 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rhode, W. S. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J. Acoust. Soc. Am.49, 1218–1231 (1971). Article Google Scholar
Emadi, G., Richter, C. P. & Dallos, P. Stiffness of the gerbil basilar membrane: radial and longitudinal variations. J. Neurophysiol.91, 474–488 (2004). ArticlePubMed Google Scholar
Neely, S. T. & Kim, D. O. An active cochlear model showing sharp tuning and high sensitivity. Hear. Res.9, 123–130 (1983). ArticleCASPubMed Google Scholar
Allen, J. B. & Neely, S. T. Micromechanical models of the cochlea. Phys. Today July, 40–47 (1992).
Brownell, W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science227, 194–196 (1985). ArticleCASPubMed Google Scholar
Ashmore, J. F. A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J. Physiol. (Lond.)388, 323–347 (1987). Detailed description of the voltage-dependent somatic contractility of isolated OHCs and evidence for a novel mechanism resident in the cell cortex. ArticleCAS Google Scholar
Zheng, J. et al. Prestin is the motor protein of cochlear outer hair cells. Nature405, 149–155 (2000). Cloning of prestin by subtractive hybridization of cDNA pools from OHCs relative to IHCs. Showed that prestin bestows voltage-dependent motility when expressed heterologously. ArticleCASPubMed Google Scholar
Belyantseva, I. A., Adler, H. J., Curi, R., Frolenkov, G. I. & Kachar, B. Expression and localization of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J. Neurosci.20, RC116 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rybalchenko, V. & Santos-Sacchi, J. Cl− flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea pig. J. Physiol. (Lond.)547, 873–891 (2003). ArticleCAS Google Scholar
Oliver, D. et al. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science292, 2340–2343 (2001). ArticleCASPubMed Google Scholar
Liberman, M. C. et al. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature419, 300–304 (2003). ArticleCAS Google Scholar
Cheatham, M. A., Huynh, K. H., Gao, J., Zuo, J. & Dallos, P. Cochlear function in Prestin knockout mice. J. Physiol. (Lond.)560, 821–830 (2004). ArticleCAS Google Scholar
Housley, G. D. & Ashmore, J. F. Ionic currents of outer hair cells isolated from the guinea-pig cochlea. J. Physiol. (Lond.)448, 73–98 (1992). ArticleCAS Google Scholar
Frank, G., Hemmert, W. & Gummer, A. W. Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. Proc. Natl Acad. Sci. USA96, 4420–4425 (1999). ArticleCASPubMedPubMed Central Google Scholar
Santos-Sacchi, J., Kakehata, S., Kikuchi, T., Katori, Y. & Takasaka, T. Density of motility-related charge in the outer hair cell of the guinea pig is inversely related to best frequency. Neurosci. Lett.256, 155–158 (1998). ArticleCASPubMed Google Scholar
Dallos, P. & Evans, B. N. High frequency outer hair cell motility: corrections and corrigendum. Science268, 1420–1421 (1995). ArticleCASPubMed Google Scholar
Russell, I. J. & Kössl, M. The voltage responses of hair cells in the basal turn of the guinea-pig cochlea. J. Physiol. (Lond.)435, 493–511 (1991). ArticleCAS Google Scholar
Crawford, A. C. & Fettiplace, R. The mechanical properties of ciliary bundles of turtle cochlear hair cells. J. Physiol. (Lond.)364, 359–379 (1985). Used photodiode imaging to show both active and spontaneous motion of the hair bundle driven by changes in membrane potential ArticleCAS Google Scholar
Hudspeth, A. J. Mechanical amplification of stimuli by hair cells. Curr. Opin. Neurobiol.7, 480–486 (1997). ArticleCASPubMed Google Scholar
Hallworth, R. Passive compliance and active force generation in the guinea pig outer hair cell. J. Neurophysiol.74, 2319–2328 (1995). ArticleCASPubMed Google Scholar
Dallos, P. Neurobiology of cochlear inner and outer hair cells: intracellular recordings. Hear. Res.22, 185–198 (1986). ArticleCASPubMed Google Scholar
Adler, H. J. et al. Expression of prestin, a membrane motor protein, in the mammalian auditory and vestibular periphery. Hear. Res.184, 27–40 (2003). ArticleCASPubMed Google Scholar
He, D. Z. et al. Chick hair cells do not exhibit voltage-dependent somatic motility. J. Physiol. (Lond.)546, 511–520 (2003). ArticleCAS Google Scholar
Kennedy, H. J., Crawford, A. C. & Fettiplace, R. Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature433, 880–883 (2005). ArticleCASPubMed Google Scholar
Chan, D. K. & Hudspeth, A. J. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nature Neurosci.8, 149–155 (2005). Imaging of IHC bundles in anin vitrocochlear preparation to show mechanical amplification dependent on MET channel function. ArticleCASPubMed Google Scholar
Kim, D. O. Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hear. Res.22, 105–114 (1986). ArticleCASPubMed Google Scholar
Kiang, N. Y., Liberman, M. C., Sewell, W. F. & Guinan, J. J. Single unit clues to cochlear mechanisms. Hear. Res.22, 171–182 (1986). ArticleCASPubMed Google Scholar
Chan, D. K. & Hudspeth, A. J. Mechanical responses of the organ of Corti to acoustic and electrical stimulation in vitro. Biophys. J. 16 Sep 2005 (10.1529/biophysj.105.070474).
Lim, D. J. Cochlear anatomy related to cochlear micromechanics. A review. J. Acoust. Soc. Am.67, 1686–1695 (1980). ArticleCASPubMed Google Scholar
Mammano, F. & Ashmore, J. F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature365, 838–841 (1993). ArticleCASPubMed Google Scholar
Russell, I. J. & Sellick, P. M. Intracellular studies of hair cells in the mammalian cochlea. J. Physiol. (Lond.)284, 261–290 (1978). ArticleCAS Google Scholar
Russell, I. J., Cody, A. R. & Richardson, G. P. The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro. Hear. Res.22, 199–216 (1986). ArticleCASPubMed Google Scholar
Eybalin, M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol. Rev.73, 309–373 (1993). ArticleCASPubMed Google Scholar
Brown, M. C. & Nuttall, A. L. Efferent control of cochlear inner hair cell responses in the guinea-pig. J. Physiol. (Lond.)354, 625–646 (1984). ArticleCAS Google Scholar
Atar, O. & Avraham, K. B. Therapeutics of hearing loss: expectations vs reality. Drug Discov. Today10, 1323–1230 (2005). ArticlePubMed Google Scholar
Marcotti, W., van Netten, S. M. & Kros, C. J. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J. Physiol. (Lond.)567, 505–521 (2005). ArticleCAS Google Scholar
Cortopassi, G. & Hutchin, T. A molecular and cellular hypothesis for aminoglycoside-induced deafness. Hear. Res.78, 27–30 (1994). ArticleCASPubMed Google Scholar