The neuropoietic cytokine family in development, plasticity, disease and injury (original) (raw)
Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature336, 684–687 (1988). ArticleCASPubMed Google Scholar
Burdon, T., Smith, A. & Savatier, P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol.12, 432–438 (2002). ArticleCASPubMed Google Scholar
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). ArticleCASPubMed Google Scholar
Carpenter, M. K. et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol.158, 265–278 (1999). ArticleCASPubMed Google Scholar
Wright, L. S. et al. Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J. Neurochem.86, 179–195 (2003). ArticleCASPubMed Google Scholar
Wright, L. S., Prowse, K. R., Wallace, K., Linskens, M. H. & Svendsen, C. N. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp. Cell Res.312, 2107–2120 (2006). ArticleCASPubMed Google Scholar
Galli, R., Pagano, S. F., Gritti, A. & Vescovi, A. L. Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev. Neurosci.22, 86–95 (2000). ArticleCASPubMed Google Scholar
Pagano, S. F. et al. Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells18, 295–300 (2000). ArticleCASPubMed Google Scholar
Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). ArticleCASPubMed Google Scholar
Seaberg, R. M. & van der Kooy, D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J. Neurosci.22, 1784–1793 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pitman, M. et al. LIF receptor signaling modulates neural stem cell renewal. Mol. Cell. Neurosci.27, 255–266 (2004). ArticleCASPubMed Google Scholar
Shimazaki, T., Shingo, T. & Weiss, S. The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J. Neurosci.21, 7642–7653 (2001). Shows that LIF signalling is crucial for the maintenance of NSCsin vitro. ArticleCASPubMedPubMed Central Google Scholar
Gregg, C. & Weiss, S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development132, 565–578 (2005). ArticleCASPubMed Google Scholar
Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G. & Weiss, S. Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J. Neurosci.23, 1730–1741 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev.16, 846–858 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chang, M. Y., Park, C. H., Son, H., Lee, Y. S. & Lee, S. H. Developmental stage-dependent self-regulation of embryonic cortical precursor cell survival and differentiation by leukemia inhibitory factor. Cell Death Differ.11, 985–996 (2004). ArticleCASPubMed Google Scholar
Hatta, T., Moriyama, K., Nakashima, K., Taga, T. & Otani, H. The role of gp130 in cerebral cortical development: in vivo functional analysis in a mouse exo utero system. J. Neurosci.22, 5516–5524 (2002). ArticleCASPubMedPubMed Central Google Scholar
Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron28, 69–80 (2000). ArticleCASPubMed Google Scholar
Yamamori, T. et al. The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor. Science246, 1412–1416 (1989). ArticleCASPubMed Google Scholar
Bonni, A. et al. Regulation of gliogenesis in the central nervous system by the JAK–STAT signaling pathway. Science278, 477–483 (1997). ArticleCASPubMed Google Scholar
Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron48, 253–265 (2005). Shows that although neither LIF nor CNTF are required for the proper timing of the developmental switch from neurogenesis to gliogenesis, CT-1 is crucial. ArticleCASPubMed Google Scholar
Burrows, R. C., Wancio, D., Levitt, P. & Lillien, L. Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron19, 251–267 (1997). ArticleCASPubMed Google Scholar
Viti, J., Feathers, A., Phillips, J. & Lillien, L. Epidermal growth factor receptors control competence to interpret leukemia inhibitory factor as an astrocyte inducer in developing cortex. J. Neurosci.23, 3385–3393 (2003). ArticleCASPubMedPubMed Central Google Scholar
He, F. et al. A positive autoregulatory loop of Jak–STAT signaling controls the onset of astrogliogenesis. Nature Neurosci.8, 616–625 (2005). ArticleCASPubMed Google Scholar
Stockli, K. A. et al. Regional distribution, developmental changes, and cellular localization of CNTF-mRNA and protein in the rat brain. J. Cell Biol.115, 447–459 (1991). ArticleCASPubMed Google Scholar
Koblar, S. A. et al. Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl Acad. Sci. USA95, 3178–3181 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bugga, L., Gadient, R. A., Kwan, K., Stewart, C. L. & Patterson, P. H. Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. J. Neurobiol.36, 509–524 (1998). ArticleCASPubMed Google Scholar
Ware, C. B. et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development121, 1283–1299 (1995). CASPubMed Google Scholar
Nakashima, K. et al. Developmental requirement of gp130 signaling in neuronal survival and astrocyte differentiation. J. Neurosci.19, 5429–5434 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sendtner, M. et al. Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr. Biol.6, 686–694 (1996). ArticleCASPubMed Google Scholar
Holtmann, B. et al. Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. J. Neurosci.25, 1778–1787 (2005). ArticleCASPubMedPubMed Central Google Scholar
Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M. & McKay, R. D. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev.10, 3129–3140 (1996). ArticleCASPubMed Google Scholar
Bonaguidi, M. A. et al. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development132, 5503–5514 (2005). ArticleCASPubMed Google Scholar
Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97, 703–16 (1999). Shows thatGfap-expressing cells in the adult mouse SVZ behave as NSCs bothin vitroandin vivo. ArticleCASPubMed Google Scholar
Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci.7, 1233–1241 (2004). ArticleCASPubMed Google Scholar
Emsley, J. G. & Hagg, T. Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp. Neurol.183, 298–310 (2003). ArticleCASPubMed Google Scholar
Kokoeva, M. V., Yin, H. & Flier, J. S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science310, 679–683 (2005). Provides evidence that CNTF influences body weight through effects on neurogenesis in the hypothalamus, raising interesting questions about the relationship between behaviour and neurogenesis in novel brain areas. ArticleCASPubMed Google Scholar
Bauer, S. & Patterson, P. H. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J. Neurosci.26, 12089–12099 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vallieres, L., Campbell, I. L., Gage, F. H. & Sawchenko, P. E. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci.22, 486–492 (2002). ArticleCASPubMedPubMed Central Google Scholar
Doetsch, F., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci.17, 5046–5061 (1997). ArticleCASPubMedPubMed Central Google Scholar
Imura, T., Kornblum, H. I. & Sofroniew, M. V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci.23, 2824–2832 (2003). ArticleCASPubMedPubMed Central Google Scholar
Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci.21, 7153–7160 (2001). ArticleCASPubMedPubMed Central Google Scholar
Magavi, S. S., Leavitt, B. R. & Macklis, J. D. Induction of neurogenesis in the neocortex of adult mice. Nature405, 951–955 (2000). The first paper to show that repair in the adult brain could be induced from endogenous neural progenitor cells. ArticleCASPubMed Google Scholar
Chen, J., Magavi, S. S. & Macklis, J. D. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc. Natl Acad. Sci. USA101, 16357–16362 (2004). ArticleCASPubMedPubMed Central Google Scholar
Agasse, F., Roger, M. & Coronas, V. Neurogenic and intact or apoptotic non-neurogenic areas of adult brain release diffusible molecules that differentially modulate the development of subventricular zone cell cultures. Eur. J. Neurosci.19, 1459–1468 (2004). ArticlePubMed Google Scholar
Banner, L. R., Moayeri, N. N. & Patterson, P. H. Leukemia inhibitory factor is expressed in astrocytes following cortical brain injury. Exp. Neurol.147, 1–9 (1997). ArticleCASPubMed Google Scholar
Banner, L. R. & Patterson, P. H. Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc. Natl Acad. Sci. USA91, 7109–7113 (1994). The first demonstration that LIF is an important mediator of neural injury responses. This paper identifies the timecourse and cellular source ofLifexpression after peripheral nerve injury in the adult. ArticleCASPubMedPubMed Central Google Scholar
Bauer, S. et al. Leukemia inhibitory factor is a key signal for injury-induced neurogenesis in the adult mouse olfactory epithelium. J. Neurosci.23, 1792–1803 (2003). The first study to show that LIF is crucial for injury-induced neuron regenerationin vivo. ArticleCASPubMedPubMed Central Google Scholar
Jankowsky, J. L. & Patterson, P. H. Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp. Neurol.159, 333–346 (1999). ArticleCASPubMed Google Scholar
Minami, M. et al. Kainic acid induces leukemia inhibitory factor mRNA expression in the rat brain: differences in the time course of mRNA expression between the dentate gyrus and hippocampal CA1/CA3 subfields. Brain Res. Mol. Brain Res.107, 39–46 (2002). ArticleCASPubMed Google Scholar
Sriram, K., Benkovic, S. A., Hebert, M. A., Miller, D. B. & O'Callaghan, J. P. Induction of gp130-related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up-regulation of glial fibrillary acidic protein in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of neurodegeneration: key signaling pathway for astrogliosis in vivo? J. Biol. Chem.279, 19936–19947 (2004). ArticleCASPubMed Google Scholar
Suzuki, S. et al. Immunohistochemical detection of leukemia inhibitory factor after focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab.20, 661–668 (2000). ArticleCASPubMed Google Scholar
Getchell, T. V., Shah, D. S., Partin, J. V., Subhedar, N. K. & Getchell, M. L. Leukemia inhibitory factor mRNA expression is upregulated in macrophages and olfactory receptor neurons after target ablation. J. Neurosci. Res.67, 246–254 (2002). ArticleCASPubMed Google Scholar
Nan, B., Getchell, M. L., Partin, J. V. & Getchell, T. V. Leukemia inhibitory factor, interleukin-6, and their receptors are expressed transiently in the olfactory mucosa after target ablation. J. Comp. Neurol.435, 60–77 (2001). ArticleCASPubMed Google Scholar
Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science302, 1760–1765 (2003). ArticleCASPubMed Google Scholar
Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl Acad. Sci. USA100, 13632–13637 (2003). ArticleCASPubMedPubMed Central Google Scholar
Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Med.8, 963–970 (2002). ArticleCASPubMed Google Scholar
Yamashita, T. et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci.26, 6627–6636 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, R. et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J. Cereb. Blood Flow Metab.24, 441–448 (2004). ArticlePubMed Google Scholar
Felling, R. J. et al. Neural stem/progenitor cells participate in the regenerative response to perinatal hypoxia/ischemia. J. Neurosci.26, 4359–4369 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hoehn, B. D., Palmer, T. D. & Steinberg, G. K. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke36, 2718–2724 (2005). ArticleCASPubMed Google Scholar
Kluska, M. M., Witte, O. W., Bolz, J. & Redecker, C. Neurogenesis in the adult dentate gyrus after cortical infarcts: effects of infarct location, _N_-methyl-D-aspartate receptor blockade and anti-inflammatory treatment. Neuroscience135, 723–735 (2005). ArticleCASPubMed Google Scholar
Suzuki, S. et al. Activation of cytokine signaling through leukemia inhibitory factor receptor (LIFR)/gp130 attenuates ischemic brain injury in rats. J. Cereb. Blood Flow Metab.25, 685–693 (2005). ArticleCASPubMed Google Scholar
Rao, M. S. et al. Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons. Neuron11, 1175–1185 (1993). Highlights and clarifies the importance of LIF's role in mediating the phenotypic alteration in neuropeptide synthesis by sensory neurons after injury. ArticleCASPubMed Google Scholar
Zigmond, R. E. & Sun, Y. Regulation of neuropeptide expression in sympathetic neurons. Paracrine and retrograde influences. Ann. NY Acad. Sci.814, 181–197 (1997). ArticleCASPubMed Google Scholar
Holmberg, K. H. & Patterson, P. H. Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res.1075, 26–35 (2006). ArticleCASPubMed Google Scholar
Stanke, M. et al. Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development133, 141–150 (2006). ArticleCASPubMed Google Scholar
Ito, Y. et al. Temporal expression of mRNAs for neuropoietic cytokines, interleukin-11 (IL-11), oncostatin M (OSM), cardiotrophin-1 (CT-1) and their receptors (IL-11Rα and OSMRβ) in peripheral nerve injury. Neurochem. Res.25, 1113–1118 (2000). ArticleCASPubMed Google Scholar
Ito, Y. et al. Expression of mRNAs for ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and their receptors (CNTFR α, LIFR β, IL-6R α, and gp130) in human peripheral neuropathies. Neurochem. Res.26, 51–58 (2001). ArticleCASPubMed Google Scholar
Stockli, K. A. et al. Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature342, 920–923 (1989). ArticleCASPubMed Google Scholar
Friedman, B. et al. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron9, 295–305 (1992). ArticleCASPubMed Google Scholar
Curtis, R. et al. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury. Nature365, 253–255 (1993). ArticleCASPubMed Google Scholar
Curtis, R. et al. Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron12, 191–204 (1994). ArticleCASPubMed Google Scholar
Thompson, S. W., Vernallis, A. B., Heath, J. K. & Priestley, J. V. Leukaemia inhibitory factor is retrogradely transported by a distinct population of adult rat sensory neurons: co-localization with trkA and other neurochemical markers. Eur. J. Neurosci.9, 1244–1251 (1997). ArticleCASPubMed Google Scholar
Bennett, T. M. et al. Anterograde transport of leukemia inhibitory factor within transected sciatic nerves. Muscle Nerve22, 78–87 (1999). ArticleCASPubMed Google Scholar
Sendtner, M., Kreutzberg, G. W. & Thoenen, H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature345, 440–441 (1990). One of the earliest demonstrations that CNTF is an important trophic factor for motor neurons after injury. ArticleCASPubMed Google Scholar
Cheema, S. S., Richards, L., Murphy, M. & Bartlett, P. F. Leukemia inhibitory factor prevents the death of axotomised sensory neurons in the dorsal root ganglia of the neonatal rat. J. Neurosci. Res.37, 213–218 (1994). ArticleCASPubMed Google Scholar
Ikeda, K., Iwasaki, Y., Shiojima, T. & Kinoshita, M. Neuroprotective effect of various cytokines on developing spinal motoneurons following axotomy. J. Neurol. Sci.135, 109–113 (1996). ArticleCASPubMed Google Scholar
Murphy, P. G. et al. Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. Eur. J. Neurosci.12, 1891–1899 (2000). ArticleCASPubMed Google Scholar
Murphy, M., Reid, K., Hilton, D. J. & Bartlett, P. F. Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc. Natl Acad. Sci. USA88, 3498–3501 (1991). ArticleCASPubMedPubMed Central Google Scholar
Martinou, J. C., Martinou, I. & Kato, A. C. Cholinergic differentiation factor (CDF/LIF) promotes survival of isolated rat embryonic motoneurons in vitro. Neuron8, 737–744 (1992). ArticleCASPubMed Google Scholar
Masu, Y. et al. Disruption of the CNTF gene results in motor neuron degeneration. Nature365, 27–32 (1993). ArticleCASPubMed Google Scholar
Hughes, R. A., Sendtner, M. & Thoenen, H. Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res.36, 663–671 (1993). ArticleCASPubMed Google Scholar
Cheema, S. S., Richards, L. J., Murphy, M. & Bartlett, P. F. Leukaemia inhibitory factor rescues motoneurones from axotomy-induced cell death. Neuroreport5, 989–992 (1994). ArticleCASPubMed Google Scholar
Ikeda, K., Iwasaki, Y., Tagaya, N., Shiojima, T. & Kinoshita, M. Neuroprotective effect of cholinergic differentiation factor/leukemia inhibitory factor on wobbler murine motor neuron disease. Muscle Nerve18, 1344–1347 (1995). ArticleCASPubMed Google Scholar
Ikeda, K. et al. Coadministration of interleukin-6 (IL-6) and soluble IL-6 receptor delays progression of wobbler mouse motor neuron disease. Brain Res.726, 91–97 (1996). ArticleCASPubMed Google Scholar
Kurek, J. B. et al. LIF (AM424), a promising growth factor for the treatment of ALS. J. Neurol. Sci.160, S106–S113 (1998). ArticleCASPubMed Google Scholar
Azari, M. F., Galle, A., Lopes, E. C., Kurek, J. & Cheema, S. S. Leukemia inhibitory factor by systemic administration rescues spinal motor neurons in the SOD1 G93A murine model of familial amyotrophic lateral sclerosis. Brain Res.922, 144–147 (2001). ArticleCASPubMed Google Scholar
Feeney, S. J. et al. The effect of leukaemia inhibitory factor on SOD1 G93A murine amyotrophic lateral sclerosis. Cytokine23, 108–118 (2003). ArticleCASPubMed Google Scholar
Pun, S., Santos, A. F., Saxena, S., Xu, L. & Caroni, P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nature Neurosci.9, 408–419 (2006). ArticleCASPubMed Google Scholar
Hurko, O. & Walsh, F. S. Novel drug development for amyotrophic lateral sclerosis. J. Neurol. Sci.180, 21–28 (2000). ArticleCASPubMed Google Scholar
Davis, I. D. et al. A randomized, double-blinded, placebo-controlled phase II trial of recombinant human leukemia inhibitory factor (rhuLIF, emfilermin, AM424) to prevent chemotherapy-induced peripheral neuropathy. Clin. Cancer Res.11, 1890–1898 (2005). ArticleCASPubMed Google Scholar
Bloch, J. et al. Neuroprotective gene therapy for Huntington's disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum. Gene Ther.15, 968–975 (2004). ArticleCASPubMed Google Scholar
Pennica, D. et al. Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron17, 63–74 (1996). ArticleCASPubMed Google Scholar
Oppenheim, R. W. et al. Cardiotrophin-1, a muscle-derived cytokine, is required for the survival of subpopulations of developing motoneurons. J. Neurosci.21, 1283–1291 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lesbordes, J. C. et al. Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy. Hum. Mol. Genet.12, 1233–1239 (2003). ArticleCASPubMed Google Scholar
Tham, S. et al. Leukemia inhibitory factor enhances the regeneration of transected rat sciatic nerve and the function of reinnervated muscle. J. Neurosci. Res.47, 208–215 (1997). ArticleCASPubMed Google Scholar
Cafferty, W. B. J. et al. Leukemia inhibitory factor determines the growth status of injured adult sensory neurons. J. Neurosci.21, 7161–7170 (2001). A key demonstration of the importance of LIF for peripheral nerve regeneration. It describes for the first time a role for LIF in mediating a switch in the capacity for growth by sensory neurons following 'conditioning lesions'. ArticleCASPubMedPubMed Central Google Scholar
Hirota, H., Kiyama, H., Kishimoto, T. & Taga, T. Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J. Exp. Med.183, 2627–2634 (1996). ArticleCASPubMed Google Scholar
Zhong, J., Dietzel, I. D., Wahle, P., Kopf, M. & Heumann, R. Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J. Neurosci.19, 4305–4313 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cafferty, W. B. et al. Conditioning injury-induced spinal axon regeneration fails in interleukin-6 knock-out mice. J. Neurosci.24, 4432–4443 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cao, Z. et al. The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth. J. Neurosci.26, 5565–5573 (2006). ArticleCASPubMedPubMed Central Google Scholar
Blesch, A. et al. Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J. Neurosci.19, 3556–3566 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fisher, J. et al. Increased post-traumatic survival of neurons in IL-6-knockout mice on a background of EAE susceptibility. J. Neuroimmunol.119, 1–9 (2001). ArticleCASPubMed Google Scholar
Barres, B. A., Schmid, R., Sendnter, M. & Raff, M. C. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development118, 283–295 (1993). CASPubMed Google Scholar
Barres, B. A. et al. Ciliary neurotrophic factor enhances the rate of oligodendrocyte generation. Mol. Cell. Neurosci.8, 146–156 (1996). ArticleCASPubMed Google Scholar
Ishibashi, T. et al. Astrocytes promote myelination in response to electrical impulses. Neuron49, 823–832 (2006). Describes a novel mechanism by which LIF is crucial for the myelination of developing axons. ArticleCASPubMedPubMed Central Google Scholar
Schonrock, L. M., Gawlowski, G. & Bruck, W. Interleukin-6 expression in human multiple sclerosis lesions. Neurosci. Lett.294, 45–48 (2000). ArticleCASPubMed Google Scholar
Vanderlocht, J. et al. Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-α-induced oligodendrocyte apoptosis. J. Neurosci. Res.83, 763–774 (2006). ArticleCASPubMed Google Scholar
Butzkueven, H., Emery, B., Cipriani, T., Marriott, M. P. & Kilpatrick, T. J. Endogenous leukemia inhibitory factor production limits autoimmune demyelination and oligodendrocyte loss. Glia53, 696–703 (2006). ArticlePubMed Google Scholar
Linker, R. A. et al. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nature Med.8, 620–624 (2002). ArticleCASPubMed Google Scholar
Butzkueven, H. et al. LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nature Med.8, 613–619 (2002). Along with reference 113, this study highlights the beneficial role that CNTF and LIF signalling have in promoting oligodendrocyte survival in an animal model of multiple sclerosis. ArticleCASPubMed Google Scholar
Laura, M., Gregson, N. A., Curmi, Y. & Hughes, R. A. Efficacy of leukemia inhibitory factor in experimental autoimmune neuritis. J. Neuroimmunol.133, 56–59 (2002). ArticleCASPubMed Google Scholar
Emery, B. et al. Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. Proc. Natl Acad. Sci. USA103, 7859–7864 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hoffmann, V., Pohlau, D., Przuntek, H., Epplen, J. T. & Hardt, C. A null mutation within the ciliary neurotrophic factor (CNTF)-gene: implications for susceptibility and disease severity in patients with multiple sclerosis. Genes Immun.3, 53–55 (2002). ArticleCASPubMed Google Scholar
Vanderlocht, J., Burzykowski, T., Somers, V., Stinissen, P. & Hellings, N. No association of leukemia inhibitory factor (LIF) DNA polymorphisms with multiple sclerosis. J. Neuroimmunol.171, 189–192 (2006). ArticleCASPubMed Google Scholar
Giess, R. et al. Association of a null mutation in the CNTF gene with early onset of multiple sclerosis. Arch. Neurol.59, 407–409 (2002). ArticlePubMed Google Scholar
Zang da, W. & Cheema, S. S. Leukemia inhibitory factor promotes recovery of locomotor function following spinal cord injury in the mouse. J. Neurotrauma20, 1215–1222 (2003). ArticlePubMed Google Scholar
Kerr, B. J. & Patterson, P. H. Leukemia inhibitory factor promotes oligodendrocyte survival after spinal cord injury. Glia51, 73–79 (2005). Along with reference 120, this paper extends the observation that LIF can promote oligodendrocyte survival in models of spinal cord injury. ArticlePubMed Google Scholar
Kaplin, A. I. et al. IL-6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis. J. Clin. Invest.115, 2731–2741 (2005). ArticleCASPubMedPubMed Central Google Scholar
Klein, M. A. et al. Impaired neuroglial activation in interleukin-6 deficient mice. Glia19, 227–233 (1997). ArticleCASPubMed Google Scholar
Sugiura, S. et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur. J. Neurosci.12, 457–466 (2000). ArticleCASPubMed Google Scholar
Martin, A., Hofmann, H. D. & Kirsch, M. Glial reactivity in ciliary neurotrophic factor-deficient mice after optic nerve lesion. J. Neurosci.23, 5416–5424 (2003). ArticleCASPubMedPubMed Central Google Scholar
Swartz, K. R. et al. Interleukin-6 promotes post-traumatic healing in the central nervous system. Brain Res.896, 86–95 (2001). ArticleCASPubMed Google Scholar
Kerr, B. J. & Patterson, P. H. Potent pro-inflammatory actions of leukemia inhibitory factor in the spinal cord of the adult mouse. Exp. Neurol.188, 391–407 (2004). ArticleCASPubMed Google Scholar
Lacroix, S., Chang, L., Rose-John, S. & Tuszynski, M. H. Delivery of hyper-interleukin-6 to the injured spinal cord increases neutrophil and macrophage infiltration and inhibits axonal growth. J. Comp. Neurol.454, 213–228 (2002). ArticleCASPubMed Google Scholar
Banner, L. R., Patterson, P. H., Allchorne, A., Poole, S. & Woolf, C. J. Leukemia inhibitory factor is an anti-inflammatory and analgesic cytokine. J. Neurosci.18, 5456–5462 (1998). An important description of LIF's anti-inflammatory actions after cutaneous tissue injury, and the implications of this function for regulating inflammatory hyperalgesia. ArticleCASPubMedPubMed Central Google Scholar
Thompson, S. W., Dray, A. & Urban, L. Leukemia inhibitory factor induces mechanical allodynia but not thermal hyperalgesia in the juvenile rat. Neuroscience71, 1091–1094 (1996). ArticleCASPubMed Google Scholar
Tofaris, G. K., Patterson, P. H., Jessen, K. R. & Mirsky, R. Denervated Schwann cells attract macrophages by secretion of leukemia inhibitory factor (LIF) and monocyte chemoattractant protein-1 in a process regulated by interleukin-6 and LIF. J. Neurosci.22, 6696–6703 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gadient, R. A. & Otten, U. Postnatal expression of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) mRNAs in rat sympathetic and sensory ganglia. Brain Res.724, 41–46 (1996). ArticleCASPubMed Google Scholar
Tamura, S., Morikawa, Y. & Senba, E. Localization of oncostatin M receptor β in adult and developing CNS. Neuroscience119, 991–997 (2003). ArticleCASPubMed Google Scholar
Morikawa, Y. et al. Essential function of oncostatin M in nociceptive neurons of dorsal root ganglia. J. Neurosci.24, 1941–1947 (2004). ArticleCASPubMedPubMed Central Google Scholar
DeLeo, J. A., Colburn, R. W., Nichols, M. & Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res.16, 695–700 (1996). ArticleCASPubMed Google Scholar
Vissers, K. C., De Jongh, R. F., Hoffmann, V. L. & Meert, T. F. Exogenous interleukin-6 increases cold allodynia in rats with a mononeuropathy. Cytokine30, 154–159 (2005). ArticleCASPubMed Google Scholar
Flatters, S. J., Fox, A. J. & Dickenson, A. H. Spinal interleukin-6 (IL-6) inhibits nociceptive transmission following neuropathy. Brain Res.984, 54–62 (2003). ArticleCASPubMed Google Scholar
Xu, X. J. et al. Nociceptive responses in interleukin-6-deficient mice to peripheral inflammation and peripheral nerve section. Cytokine9, 1028–1033 (1997). ArticleCASPubMed Google Scholar
Ramer, M. S., Murphy, P. G., Richardson, P. M. & Bisby, M. A. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain78, 115–121 (1998). ArticleCASPubMed Google Scholar
Murphy, P. G. et al. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur. J. Neurosci.11, 2243–2253 (1999). ArticleCASPubMed Google Scholar
Shi, L., Fatemi, S. H., Sidwell, R. W. & Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J. Neurosci.23, 297–302 (2003). Using mice, this paper shows that a known risk factor for schizophrenia, maternal respiratory infection, strongly influences behaviour in the adult offspring. It also introduces a novel model of activation of the maternal immune system, using the dsRNA poly(I:C). ArticlePubMedPubMed Central Google Scholar
Samuelsson, A. M., Jennische, E., Hansson, H. A. & Holmang, A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning. Am. J. Physiol. Regul. Integr. Comp. Physiol.290, R1345–R1356 (2006). ArticleCASPubMed Google Scholar
Juttler, E., Tarabin, V. & Schwaninger, M. Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity. Neuroscientist8, 268–275 (2002). ArticleCASPubMed Google Scholar
Jankowsky, J. L., Derrick, B. E. & Patterson, P. H. Cytokine responses to LTP induction in the rat hippocampus: a comparison of in vitro and in vivo techniques. Learn Mem.7, 400–412 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bellinger, F. P., Madamba, S. G., Campbell, I. L. & Siggins, G. R. Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci. Lett.198, 95–98 (1995). ArticleCASPubMed Google Scholar
Campbell, I. L. et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl Acad. Sci. USA90, 10061–10065 (1993). ArticleCASPubMedPubMed Central Google Scholar
Li, A. J., Katafuchi, T., Oda, S., Hori, T. & Oomura, Y. Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain Res.748, 30–38 (1997). ArticleCASPubMed Google Scholar
Tancredi, V. et al. The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J. Neurochem.75, 634–643 (2000). ArticleCASPubMed Google Scholar
Balschun, D. et al. Interleukin-6: a cytokine to forget. Faseb J.18, 1788–1790 (2004). The authors use anti-IL-6 antibody injections to show the importance of endogenous IL-6 in LTP and long-term memory, and thereby strongly extend work on theIl-6knockout and experiments using application of exogenous IL-6. ArticleCASPubMed Google Scholar
Braida, D. et al. Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav. Brain Res.153, 423–429 (2004). ArticleCASPubMed Google Scholar
Heyser, C. J., Masliah, E., Samimi, A., Campbell, I. L. & Gold, L. H. Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. Proc. Natl Acad. Sci. USA94, 1500–1555 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ma, T. C. & Zhu, X. Z. Effects of intrahippocampal infusion of interleukin-6 on passive avoidance and nitrite and prostaglandin levels in the hippocampus in rats. Arzneimittelforschung50, 227–231 (2000). CASPubMed Google Scholar
Gruol, D. L. & Nelson, T. E. Purkinje neuron physiology is altered by the inflammatory factor interleukin-6. Cerebellum4, 198–205 (2005). ArticleCASPubMed Google Scholar
Penkowa, M., Molinero, A., Carrasco, J. & Hidalgo, J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience102, 805–818 (2001). TheIl-6knockout is used here to demonstrate the importance of endogenous IL-6 in regulating seizure threshold, and presumably the balance of excitation and inhibition in the CNS. ArticleCASPubMed Google Scholar
Samland, H. et al. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J. Neurosci. Res.73, 176–187 (2003). ArticleCASPubMed Google Scholar
Kraves, S. & Weitz, C. J. A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nature Neurosci.9, 212–219 (2006). ArticleCASPubMed Google Scholar
Swiergiel, A. H. & Dunn, A. J. Feeding, exploratory, anxiety- and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behav. Brain Res.171, 94–108 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dantzer, R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur. J. Pharmacol.500, 399–411 (2004). ArticleCASPubMed Google Scholar
Morrow, J. D. & Opp, M. R. Sleep–wake behavior and responses of interleukin-6-deficient mice to sleep deprivation. Brain Behav. Immun.19, 28–39 (2005). ArticleCASPubMed Google Scholar
Alleva, E. et al. Behavioural characterization of interleukin-6 overexpressing or deficient mice during agonistic encounters. Eur. J. Neurosci.10, 3664–3672 (1998). ArticleCASPubMed Google Scholar
Chesnokova, V. & Melmed, S. Minireview: Neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling molecules. Endocrinology143, 1571–1574 (2002). ArticleCASPubMed Google Scholar
Butterweck, V., Prinz, S. & Schwaninger, M. The role of interleukin-6 in stress-induced hyperthermia and emotional behaviour in mice. Behav. Brain Res.144, 49–56 (2003). ArticleCASPubMed Google Scholar
Swiergiel, A. H. & Dunn, A. J. Feeding, exploratory, anxiety- and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behav. Brain Res.171, 94–108 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kahl, K. G. et al. Cortisol, the cortisol-dehydroepiandrosterone ratio, and pro-inflammatory cytokines in patients with current major depressive disorder comorbid with borderline personality disorder. Biol. Psychiatry59, 667–671 (2006). ArticleCASPubMed Google Scholar
Nunes, S. O. et al. An autoimmune or an inflammatory process in patients with schizophrenia, schizoaffective disorder, and in their biological relatives. Schizophr. Res.84, 180–182 (2006). ArticlePubMed Google Scholar
Pae, C. U. et al. Antipsychotic treatment may alter T-helper (TH) 2 arm cytokines. Int. Immunopharmacol.6, 666–671 (2006). ArticleCASPubMed Google Scholar
Pike, J. L. & Irwin, M. R. Dissociation of inflammatory markers and natural killer cell activity in major depressive disorder. Brain Behav. Immun.20, 169–174 (2006). ArticleCASPubMed Google Scholar
Tsao, C. W., Lin, Y. S., Chen, C. C., Bai, C. H. & Wu, S. R. Cytokines and serotonin transporter in patients with major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry30, 899–905 (2006). ArticleCASPubMed Google Scholar
Wichers, M. C. et al. Baseline immune activation as a risk factor for the onset of depression during interferon-α treatment. Biol. Psychiatry60, 77–79 (2006). ArticleCASPubMed Google Scholar
Pechnick, R. N. et al. Reduced immobility in the forced swim test in mice with a targeted deletion of the leukemia inhibitory factor (LIF) gene. Neuropsychopharmacology29, 770–776 (2004). ArticleCASPubMed Google Scholar
Chourbaji, S. et al. IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol. Dis.23, 587–594 (2006). ArticleCASPubMed Google Scholar
Plata-Salaman, C. R. Cytokines and feeding suppression: an integrative view from neurologic to molecular levels. Nutrition11, 674–677 (1995). CASPubMed Google Scholar
Fernandez-Moreno, C., Pichel, J. G., Chesnokova, V. & De Pablo, F. Increased leptin and white adipose tissue hypoplasia are sexually dimorphic in Lif null/Igf-I haploinsufficient mice. FEBS Lett.557, 64–68 (2004). ArticleCASPubMed Google Scholar
Rondinone, C. M. Adipocyte-derived hormones, cytokines, and mediators. Endocrine29, 81–90 (2006). ArticleCASPubMed Google Scholar
Prima, V. et al. Differential modulation of energy balance by leptin, ciliary neurotrophic factor, and leukemia inhibitory factor gene delivery: microarray deoxyribonucleic acid-chip analysis of gene expression. Endocrinology145, 2035–2045 (2004). ArticleCASPubMed Google Scholar