Pharmacogenetic approaches to the treatment of alcohol addiction (original) (raw)
Rehm, J. et al. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet373, 2223–2233 (2009). ArticlePubMed Google Scholar
Nutt, D. J., King, L. A. & Phillips, L. D. Drug harms in the UK: a multicriteria decision analysis. Lancet376, 1558–1565 (2010). ArticlePubMed Google Scholar
Hasin, D. S., Stinson, F. S., Ogburn, E. & Grant, B. F. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch. Gen. Psychiatry64, 830–842 (2007). ArticlePubMed Google Scholar
McLellan, A. T., Lewis, D. C., O'Brien, C. P. & Kleber, H. D. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. JAMA284, 1689–1695 (2000). ArticleCASPubMed Google Scholar
Goldman, D., Oroszi, G. & Ducci, F. The genetics of addictions: uncovering the genes. Nature Rev. Genet.6, 521–532 (2005). ArticleCASPubMed Google Scholar
Bouza, C., Angeles, M., Munoz, A. & Amate, J. M. Efficacy and safety of naltrexone and acamprosate in the treatment of alcohol dependence: a systematic review. Addiction99, 811–828 (2004). ArticlePubMed Google Scholar
Amato, L. et al. An overview of systematic reviews of the effectiveness of opiate maintenance therapies: available evidence to inform clinical practice and research. J. Subst. Abuse Treat.28, 321–329 (2005). ArticlePubMed Google Scholar
Wu, P., Wilson, K., Dimoulas, P. & Mills, E. Effectiveness of smoking cessation therapies: a systematic review and meta-analysis. BMC Public Health6, 300 (2006). ArticlePubMedPubMed Central Google Scholar
Willenbring, M. L., Massey, S. H. & Gardner, M. B. Helping patients who drink too much: an evidence-based guide for primary care physicians. Am. Fam. Physician80, 44–50 (2009). PubMed Google Scholar
Mark, T. L., Kranzler, H. R. & Song, X. Understanding US addiction physicians' low rate of naltrexone prescription. Drug Alcohol Depend.71, 219–228 (2003). ArticlePubMed Google Scholar
American Psychiatric Association. Diagnostics and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Press, Washington, District of Columbia, 2000).
Cloninger, C. R. Neurogenetic adaptive mechanisms in alcoholism. Science236, 410–416 (1987). ArticleCASPubMed Google Scholar
Vaillant, G. E. A long-term follow-up of male alcohol abuse. Arch. Gen. Psychiatry53, 243–249 (1996). ArticleCASPubMed Google Scholar
Vaillant, G. E. The Natural History of Alcoholism: Causes, Patterns, and Paths to Recovery (Harvard Univ. Press, Cambridge, USA, 1983). Google Scholar
Kendler, K. S., Thornton, L. M. & Gardner, C. O. Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. Am. J. Psychiatry158, 582–586 (2001). ArticleCASPubMed Google Scholar
Ballenger, J. C. & Post, R. M. Kindling as a model for alcohol withdrawal syndromes. Br. J. Psychiatry133, 1–14 (1978). ArticleCASPubMed Google Scholar
Heilig, M. & Egli, M. Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol. Ther.111, 855–876 (2006). ArticleCASPubMed Google Scholar
Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology35, 217–238 (2010). ArticlePubMed Google Scholar
Heinz, A. et al. Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake. Alcohol Alcohol.38, 35–39 (2003). ArticlePubMed Google Scholar
Wise, R. A. Dopamine, learning and motivation. Nature Rev. Neurosci.5, 483–494 (2004). ArticleCAS Google Scholar
Di Chiara, G. et al. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology47, 227–241 (2004). ArticleCASPubMed Google Scholar
Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA85, 5274–5278 (1988). ArticleCASPubMedPubMed Central Google Scholar
Spanagel, R. Alcoholism: a systems approach from molecular physiology to addictive behavior. Physiol. Rev.89, 649–705 (2009). ArticleCASPubMed Google Scholar
Boileau, I. et al. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse49, 226–231 (2003). ArticleCASPubMed Google Scholar
Gilman, J. M., Ramchandani, V. A., Davis, M. B., Bjork, J. M. & Hommer, D. W. Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J. Neurosci.28, 4583–4591 (2008). ArticleCASPubMedPubMed Central Google Scholar
Spanagel, R., Herz, A. & Shippenberg, T. S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl Acad. Sci. USA89, 2046–2050 (1992). ArticleCASPubMedPubMed Central Google Scholar
Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci.12, 483–488 (1992). ArticleCASPubMedPubMed Central Google Scholar
Tanda, G. L. & Di Chiara, G. A dopamine-μ1 opioid link in the rat ventral tegmentum shared by palatable food (Fonzies) and non-psychostimulant drugs of abuse. Eur. J. Neurosci.10, 1179–1187 (1998). ArticleCASPubMed Google Scholar
Rubio, G. et al. Clinical predictors of response to naltrexone in alcoholic patients: who benefits most from treatment with naltrexone? Alcohol Alcohol.40, 227–233 (2005). ArticleCASPubMed Google Scholar
King, A. C., Volpicelli, J. R., Frazer, A. & O'Brien, C. P. Effect of naltrexone on subjective alcohol response in subjects at high and low risk for future alcohol dependence. Psychopharmacology129, 15–22 (1997). ArticleCASPubMed Google Scholar
Krishnan-Sarin, S., Krystal, J. H., Shi, J., Pittman, B. & O'Malley, S. S. Family history of alcoholism influences naltrexone-induced reduction in alcohol drinking. Biol. Psychiatry62, 694–697 (2007). ArticleCASPubMed Google Scholar
Bergen, A. W. et al. Mu opioid receptor gene variants: lack of association with alcohol dependence. Mol. Psychiatry2, 490–494 (1997). ArticleCASPubMed Google Scholar
Bond, C. et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proc. Natl Acad. Sci. USA95, 9608–9613 (1998). This paper identified the functional N40D variation in the MOR (the target for naltrexone). ArticleCASPubMedPubMed Central Google Scholar
Bart, G. et al. Increased attributable risk related to a functional mu-opioid receptor gene polymorphism in association with alcohol dependence in central Sweden. Neuropsychopharmacology30, 417–422 (2005). ArticleCASPubMed Google Scholar
Bart, G. et al. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol. Psychiatry9, 547–549 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kroslak, T. The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J. Neurochem.103, 177–187 (2007). Google Scholar
Zhang, Y., Wang, D. X., Johnson, A. D., Papp, A. C. & Sadee, W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J. Biol. Chem.280, 32618–32624 (2005). ArticleCASPubMed Google Scholar
Arias, A., Feinn, R. & Kranzler, H. R. Association of an Asn40Asp (A118G) polymorphism in the μ-opioid receptor gene with substance dependence: a meta-analysis. Drug Alcohol Depend.83, 262–268 (2006). ArticleCASPubMed Google Scholar
Oslin, D. W. et al. A functional polymorphism of the mu-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology28, 1546–1552 (2003). This paper was the first to propose that therapeutic efficacy of naltrexone might be restricted to carriers of theOPRM1118G allele. ArticleCASPubMed Google Scholar
Anton, R. F. et al. An evaluation of μ-opioid receptor (OPRM1) as a predictor of naltrexone response in the treatment of alcohol dependence: results from the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study. Arch. Gen. Psychiatry65, 135–144 (2008). This paper provided an independent clinical replication of the finding that naltrexone is primarily effective in carriers of theOPRM1118G allele. ArticleCASPubMedPubMed Central Google Scholar
Gelernter, J. et al. Opioid receptor gene (OPRM1, OPRK1, and OPRD1) variants and response to naltrexone treatment for alcohol dependence: results from the VA cooperative study. Alcohol. Clin. Exp. Res.31, 555–563 (2007). CASPubMed Google Scholar
Ray, L. A. & Hutchison, K. E. Effects of naltrexone on alcohol sensitivity and genetic moderators of medication response — a double-blind placebo-controlled study. Arch. Gen. Psychiatry64, 1069–1077 (2007). ArticleCASPubMed Google Scholar
Ray, L. A. & Hutchison, K. E. A polymorphism of the mu-opioid receptor gene (OPRM1) and sensitivity to the effects of alcohol in humans. Alcohol. Clin. Exp. Res.28, 1789–1795 (2004). ArticleCASPubMed Google Scholar
Barr, C. S. & Goldman, D. Non-human primate models of inheritance vulnerability to alcohol use disorders. Addict. Biol.11, 374–385 (2006). ArticlePubMed Google Scholar
Miller, G. M. et al. A mu-opioid receptor single nucleotide polymorphism in rhesus monkey: association with stress response and aggression. Mol. Psychiatry9, 99–108 (2004). ArticleCASPubMed Google Scholar
Barr, C. S. et al. Association of a functional polymorphism in the mu-opioid receptor gene with alcohol response and consumption in male rhesus macaques. Arch. Gen. Psychiatry64, 369–376 (2007). A demonstration that the psychomotor response to alcohol and alcohol preference are markedly enhanced in rhesus macaques that carry anOPRM177G allele that is functionally equivalent to the human 118G allele, pointing to the possibility that mesolimbic dopamine circuitry is preferentially activated by alcohol in these subjects. ArticleCASPubMed Google Scholar
Barr, C. S. et al. Suppression of alcohol preference by naltrexone in the rhesus macaque: a critical role of genetic variation at the μ-opioid receptor gene locus. Biol. Psychiatry67, 78–80 (2010). This study demonstrated in a closely controlled experimental system that alcohol preference is selectively suppressed by naltrexone in rhesus carriers of theOPRM177G allele. ArticleCASPubMedPubMed Central Google Scholar
Vallender, E. J., Ruedi-Bettschen, D., Miller, G. M. & Platt, D. M. A pharmacogenetic model of naltrexone-induced attenuation of alcohol consumption in rhesus monkeys. Drug Alcohol Depend.109, 252–256 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. P. et al. Association between two mu-opioid receptor gene (OPRM1) haplotype blocks and drug or alcohol dependence. Hum. Mol. Genet.15, 807–819 (2006). ArticleCASPubMed Google Scholar
Oroszi, G. et al. OPRM1 Asn40Asp predicts response to naltrexone treatment: a haplotype-based approach. Alcohol. Clin. Exp. Res.33, 383–393 (2009). ArticleCASPubMed Google Scholar
Shabalina, S. A. et al. Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum. Mol. Genet.18, 1037–1051 (2009). ArticleCASPubMed Google Scholar
Ramchandani, V. A. et al. A genetic determinant of the striatal dopamine response to alcohol in men. Mol. Psychiatry16, 809–817 (2011). This study showed that, as predicted by reference 49, alcohol-induced mesolimbic dopamine-release measured using PET is markedly greater in social drinkers carrying theOPRM1118G allele than in those homozygous for the major 118A allele. It also showed that insertion of the 118G SNP into a humanized mouse is sufficient to confer increased mesolimbic dopamine release in response to alcohol, as measured directly by microdialysis. ArticleCASPubMed Google Scholar
Mague, S. D. et al. Mouse model of OPRM1 (A118G) polymorphism has sex-specific effects on drug-mediated behavior. Proc. Natl Acad. Sci. USA106, 10847–10852 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mahmoud, S. et al. Pharmacological consequence of the A118G μ opioid receptor polymorphism on morphine- and fentanyl-mediated modulation of Ca2+ channels in humanized mouse sensory neurons. Anesthesiology 14 Sep 2011 (doi:10.1097/ALN.0b013e318231fc11). ArticleCASPubMed Google Scholar
Lotsch, J. & Geisslinger, G. Relevance of frequent mu-opioid receptor polymorphisms for opioid activity in healthy volunteers. Pharmacogenomics J.6, 200–210 (2006). ArticleCASPubMed Google Scholar
Pang, G. S. Y., Wang, J. B., Wang, Z. H., Goh, C. & Lee, C. G. L. The G allele of SNP E1/A118G at the mu-opioid receptor gene locus shows genomic evidence of recent positive selection. Pharmacogenomics10, 1101–1109 (2009). ArticleCASPubMed Google Scholar
Wand, G. S., Mangold, D., El Deiry, S., McCaul, M. E. & Hoover, D. Family history of alcoholism and hypothalamic opioidergic activity. Arch. Gen. Psychiatry55, 1114–1119 (1998). ArticleCASPubMed Google Scholar
Wand, G. S. et al. The mu-opioid receptor gene polymorphism (A118G) alters HPA axis activation induced by opioid receptor blockade. Neuropsychopharmacology26, 106–114 (2002). ArticleCASPubMed Google Scholar
Hernandez-Avila, C. A. et al. Population-specific effects of the Asn40Asp polymorphism at the mu-opioid receptor gene (OPRM1) on HPA-axis activation. Pharmacogenet. Genomics17, 1031–1038 (2007). ArticleCASPubMed Google Scholar
Kiefer, F., Jahn, H., Otte, C., Naber, D. & Wiedemann, K. Hypothalamic-pituitary-adrenocortical axis activity: a target of pharmacological anticraving treatment? Biol. Psychiatry60, 74–76 (2006). ArticleCASPubMed Google Scholar
Kim, S.-G. et al. A mu opioid receptor gene polymorphism (A118G) and naltrexone treatment response in adherent Korean alcohol-dependent patients. Psychopharmacology201, 611–618 (2009). ArticleCASPubMed Google Scholar
Heilig, M., Egli, M., Crabbe, J. C. & Becker, H. C. Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict. Biol.15, 169–184 (2010). ArticlePubMedPubMed Central Google Scholar
Solomon, R. L. & Corbit, J. D. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev.81, 119–145 (1974). ArticleCASPubMed Google Scholar
Koob, G. F., Vaccarino, F., Amalric, M. & Bloom, F. E. Brain Reward Systems and Abuse (eds Engel, J. & Oreland, L.) 35–50 (Raven Press, New York, 1987). Google Scholar
Koob, G. F. & Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol.59, 29–53 (2008). ArticlePubMed Google Scholar
Koob, G. F. & Le Moal, M. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nature Neurosci.8, 1442–1444 (2005). ArticleCASPubMed Google Scholar
Vale, W., Spiess, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science213, 1394–1397 (1981). ArticleCASPubMed Google Scholar
Swanson, L. W., Sawchenko, P. E., Rivier, J. & Vale, W. W. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology36, 165–186 (1983). ArticleCASPubMed Google Scholar
Heinrichs, S. C. & Koob, G. F. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J. Pharmacol. Exp. Ther.311, 427–440 (2004). ArticleCASPubMed Google Scholar
Muller, M. B. & Wurst, W. Getting closer to affective disorders: the role of CRH receptor systems. Trends Mol. Med.10, 409–415 (2004). ArticleCASPubMed Google Scholar
Griebel, G. et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-_N_-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-_N_-(2-propynyl)-1,3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor1 receptor antagonist. II. Characterization in rodent models of stress-related disorders. J. Pharmacol. Exp. Ther.301, 333–345 (2002). ArticleCASPubMed Google Scholar
Gully, D. et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-_N_-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-_N_-(2-propynyl)-1,3-thiazol-2-amine hydrochloride (SSR125543A): a potent and selective corticotrophin-releasing factor1 receptor antagonist. I. Biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther.301, 322–332 (2002). ArticleCASPubMed Google Scholar
Hokfelt, T., Johansson, O. & Goldstein, M. Chemical anatomy of the brain. Science225, 1326–1334 (1984). ArticleCASPubMed Google Scholar
Gehlert, D. R. et al. 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl- imidazo[1,2-_b_]pyridazine: a novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J. Neurosci.27, 2718–2726 (2007). ArticleCASPubMedPubMed Central Google Scholar
Baldwin, H. A., Rassnick, S., Rivier, J., Koob, G. F. & Britton, T. K. CRF antagonist reverses the “anxiogenic” response to ethanol withdrawal in the rat. Psychopharmacology103, 227–232 (1991). ArticleCASPubMed Google Scholar
Rassnick, S., Heinrichs, S. C., Britton, K. T. & Koob, G. F. Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res.605, 25–32 (1993). ArticleCASPubMed Google Scholar
Merlo, P. E. et al. Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. J. Neurosci.15, 5439–5447 (1995). Article Google Scholar
Valdez, G. R., Zorrilla, E. P., Roberts, A. J. & Koob, G. F. Antagonism of corticotropin-releasing factor attenuates the enhanced responsiveness to stress observed during protracted ethanol abstinence. Alcohol29, 55–60 (2003). ArticleCASPubMed Google Scholar
Sommer, W. H. et al. Upregulation of voluntary alcohol intake, behavioral sensitivity to stress, and amygdala Crhr1 expression following a history of dependence. Biol. Psychiatry63, 139–145 (2008). ArticlePubMed Google Scholar
Overstreet, D. H., Knapp, D. J. & Breese, G. R. Accentuated decrease in social interaction in rats subjected to repeated ethanol withdrawals. Alcohol. Clin. Exp. Res.26, 1259–1268 (2002). ArticlePubMedPubMed Central Google Scholar
Knapp, D. J., Overstreet, D. H., Moy, S. S. & Breese, G. R. SB242084, flumazenil, and CRA1000 block ethanol withdrawal-induced anxiety in rats. Alcohol32, 101–111 (2004). ArticleCASPubMedPubMed Central Google Scholar
Overstreet, D. H., Knapp, D. J. & Breese, G. R. Modulation of multiple ethanol withdrawal-induced anxiety-like behavior by CRF and CRF1 receptors. Pharmacol. Biochem. Behav.77, 405–413 (2004). ArticleCASPubMedPubMed Central Google Scholar
Breese, G. R., Overstreet, D. H., Knapp, D. J. & Navarro, M. Prior multiple ethanol withdrawals enhance stress-induced anxiety-like behavior: inhibition by CRF1- and benzodiazepine-receptor antagonists and a 5-HT1a-receptor agonist. Neuropsychopharmacology30, 1662–1669 (2005). ArticleCASPubMed Google Scholar
Gilman, J. M. & Hommer, D. W. Modulation of brain response to emotional images by alcohol cues in alcohol-dependent patients. Addict. Biol.13, 423–434 (2008). ArticlePubMed Google Scholar
Breese, G. R., Overstreet, D. H. & Knapp, D. J. Conceptual framework for the etiology of alcoholism: a “kindling”/stress hypothesis. Psychopharmacology178, 367–380 (2005). ArticleCASPubMed Google Scholar
Epstein, D. H., Preston, K. L., Stewart, J. & Shaham, Y. Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology189, 1–16 (2006). ArticleCASPubMedPubMed Central Google Scholar
Le, A. & Shaham, Y. Neurobiology of relapse to alcohol in rats. Pharmacol. Ther.94, 137–156 (2002). ArticleCASPubMed Google Scholar
Le, A. D. et al. The role of corticotrophin-releasing factor in stress-induced relapse to alcohol-seeking behavior in rats. Psychopharmacology150, 317–324 (2000). ArticleCASPubMed Google Scholar
Liu, X. & Weiss, F. Additive effect of stress and drug cues on reinstatement of ethanol seeking: exacerbation by history of dependence and role of concurrent activation of corticotropin-releasing factor and opioid mechanisms. J. Neurosci.22, 7856–7861 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hansson, A. C. et al. Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proc. Natl Acad. Sci. USA103, 15236–15241 (2006). Using a genetically selected alcohol preferring rat line, the authors demonstrated for the first time that genetic variation affecting the CRF system influences stress-induced relapse to alcohol seeking and escalation of alcohol consumption. They showed that the potency of a CRF1antagonist was enhanced in animals with innate overexpression of CRF1. ArticleCASPubMedPubMed Central Google Scholar
Kalivas, P. W. & McFarland, K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology168, 44–56 (2003). ArticleCASPubMed Google Scholar
Le, A. D., Harding, S., Juzytsch, W., Fletcher, P. J. & Shaham, Y. The role of corticotropin-releasing factor in the median raphe nucleus in relapse to alcohol. J. Neurosci.22, 7844–7849 (2002). ArticleCASPubMedPubMed Central Google Scholar
Vertes, R. P., Fortin, W. J. & Crane, A. M. Projections of the median raphe nucleus in the rat. J. Comp. Neurol.407, 555–582 (1999). ArticleCASPubMed Google Scholar
Le, A. D. et al. Effects of naltrexone and fluoxetine on alcohol self-administration and reinstatement of alcohol seeking induced by priming injections of alcohol and exposure to stress. Neuropsychopharmacology21, 435–444 (1999). ArticleCASPubMed Google Scholar
Marinelli, P. W. et al. The CRF1 receptor antagonist antalarmin attenuates yohimbine-induced increases in operant alcohol self-administration and reinstatement of alcohol seeking in rats. Psychopharmacology195, 345–355 (2007). ArticleCASPubMed Google Scholar
Funk, C. K., Zorrilla, E. P., Lee, M. J., Rice, K. C. & Koob, G. F. Corticotropin-releasing factor 1 antagonists selectively reduce ethanol self-administration in ethanol-dependent rats. Biol. Psychiatry61, 78–86 (2007). ArticleCASPubMed Google Scholar
Funk, C. K., O'Dell, L. E., Crawford, E. F. & Koob, G. F. Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. J. Neurosci.26, 11324–11332 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sparta, D. R. et al. Blockade of the corticotropin releasing factor type 1 receptor attenuates elevated ethanol drinking associated with drinking in the dark procedures. Alcohol. Clin. Exp. Res.32, 259–265 (2008). ArticleCASPubMed Google Scholar
Lowery, E. G. et al. CRF-1 antagonist and CRF-2 agonist decrease binge-like ethanol drinking in C57BL/56J mice independent of the HPA axis. Neuropsychopharmacology35, 1241–1252 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hansson, A. C., Cippitelli, A., Sommer, W., Ciccocioppo, R. & Heilig, M. Region-specific down regulation of Crhr1 gene expression in alcohol preferring msP rats following ad lib access to alcohol. Addict. Biol.12, 30–34 (2007). ArticleCASPubMed Google Scholar
Makino, S., Hashimoto, K. & Gold, P. W. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol. Biochem. Behav.73, 147–158 (2002). ArticleCASPubMed Google Scholar
Barr, C. S. et al. Functional CRH variation increases stress-induced alcohol consumption in primates. Proc. Natl Acad. Sci. USA106, 14593–14598 (2009). This study demonstrated a gene × environment interaction, such that variation at the rhesusCRFgene locus that moderates sensitivity to feedback inhibition by cortisol moderated alcohol preference in adult life if the animals had been reared under conditions of early life adversity, but not otherwise. ArticleCASPubMedPubMed Central Google Scholar
Treutlein, J. et al. Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Mol. Psychiatry11, 594–602 (2006). The first indication that genetic variation affecting the CRF system is associated with alcohol-use phenotypes in humans. ArticleCASPubMed Google Scholar
Blomeyer, D. et al. Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use. Biol. Psychiatry63, 146–151 (2008). This study provided data supporting the notion that genetic variation at theCRFR1locus and exposure to life stressors interact to determine alcohol use phenotypes in humans. ArticleCASPubMed Google Scholar
Nelson, E. C. et al. H2 haplotype at chromosome 17q21.31 protects against childhood sexual abuse-associated risk for alcohol consumption and dependence. Addict. Biology15, 1–11 (2010). ArticleCAS Google Scholar
Kendler, K. S. et al. Childhood sexual abuse and adult psychiatric and substance use disorders in women: an epidemiological and cotwin control analysis. Arch. Gen. Psychiatry57, 953–959 (2000). ArticleCASPubMed Google Scholar
Sinha, R., Shaham, Y. & Heilig, M. Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology 15 Apr 2011 (doi: 10.1007/s00213-011-2263-y). ArticleCASPubMedPubMed Central Google Scholar
Zobel, A. W. et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res.34, 171–181 (2000). ArticleCASPubMed Google Scholar
Binneman, B. et al. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am. J. Psychiatry165, 617–620 (2008). ArticlePubMed Google Scholar
Coric, V. et al. Multicenter, randomized, double-blind, active comparator and placebo-controlled trial of a corticotropin-releasing factor receptor-1 antagonist in generalized anxiety disorder. Depress. Anxiety27, 417–425 (2010). ArticleCASPubMed Google Scholar
Binder, E. B. et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA299, 1291–1305 (2008). ArticleCASPubMedPubMed Central Google Scholar
Heilig, M., Koob, G. F., Ekman, R. & Britton, K. T. Corticotropin-releasing factor and neuropeptide Y: role in emotional integration. Trends Neurosci.17, 80–85 (1994). ArticleCASPubMed Google Scholar
Sommer, W. H. et al. Human NPY promoter variation rs16147:T>C as a moderator of prefrontal NPY gene expression and negative affect. Hum. Mutat.31, e1594–e1608 (2010). ArticleCASPubMedPubMed Central Google Scholar
Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science301, 386–389 (2003). ArticleCASPubMed Google Scholar
Zubieta, J. K. et al. COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science299, 1240–1243 (2003). ArticleCASPubMed Google Scholar
Risch, N. et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA301, 2462–2471 (2009). ArticleCASPubMedPubMed Central Google Scholar
Caspi, A., Hariri, A. R., Holmes, A., Uher, R. & Moffitt, T. E. Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am. J. Psychiatry167, 509–527 (2010). ArticlePubMedPubMed Central Google Scholar
Long, J. C. et al. Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am. J. Med. Genet.81, 216–221 (1998). ArticleCASPubMed Google Scholar
Edenberg, H. J. et al. Variations in GABRA2, encoding the α 2 subunit of the GABAA receptor, are associated with alcohol dependence and with brain oscillations. Am. J. Hum. Genet.74, 705–714 (2004). ArticleCASPubMedPubMed Central Google Scholar
Porjesz, B. et al. Linkage disequilibrium between the β frequency of the human EEG and a GABAA receptor gene locus. Proc. Natl Acad. Sci. USA99, 3729–3733 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lappalainen, J. et al. Association between alcoholism and γ-amino butyric acid α2 receptor subtype in a Russian population. Alcohol. Clin. Exp. Res.29, 493–498 (2005). ArticleCASPubMed Google Scholar
Covault, J., Gelernter, J., Hesselbrock, V., Nellissery, M. & Kranzler, H. R. Allelic and haplotypic association of GABRA2 with alcohol dependence. Am. J. Med Genet. B Neuropsychiatr. Genet.129B, 104–109 (2004). ArticlePubMed Google Scholar
Fehr, C. et al. Confirmation of association of the GABRA2 gene with alcohol dependence by subtype-specific analysis. Psychiatr. Genet.16, 9–17 (2006). ArticlePubMed Google Scholar
Morrow, A. L., VanDoren, M. J., Penland, S. N. & Matthews, D. B. The role of GABAergic neuroactive steroids in ethanol action, tolerance and dependence. Brain Res. Brain Res. Rev.37, 98–109 (2001). ArticleCASPubMed Google Scholar
Pierucci-Lagha, A. et al. GABRA2 alleles moderate the subjective effects of alcohol, which are attenuated by finasteride. Neuropsychopharmacology30, 1193–1203 (2005). ArticleCASPubMed Google Scholar
Roh, S. et al. Role of GABRA2 in moderating subjective responses to alcohol. Alcohol. Clin. Exp. Res.35, 400–407 (2011). ArticleCASPubMed Google Scholar
Villafuerte, S. et al. Impulsiveness and insula activation during reward anticipation are associated with genetic variants in GABRA2 in a family sample enriched for alcoholism. Mol. Psychiatry 12 Apr 2011 (doi: 10.1038/mp.2011.33). ArticleCASPubMedPubMed Central Google Scholar
Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M. & Hommer, D. A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage18, 263–272 (2003). ArticlePubMed Google Scholar
Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci.21, RC159 (2001). ArticleCASPubMedPubMed Central Google Scholar
Torrens, M., Fonseca, F., Mateu, G. & Farre, M. Efficacy of antidepressants in substance use disorders with and without comorbid depression. A systematic review and meta-analysis. Drug Alcohol Depend.78, 1–22 (2005). ArticleCASPubMed Google Scholar
Johnson, B. A., Ait-Daoud, N., Ma, J. Z. & Wang, Y. Ondansetron reduces mood disturbance among biologically predisposed, alcohol-dependent individuals. Alcohol. Clin. Exp. Res.27, 1773–1779 (2003). ArticleCASPubMed Google Scholar
Johnson, B. A., Roache, J. D., Ait-Daoud, N., Zanca, N. A. & Velazquez, M. Ondansetron reduces the craving of biologically predisposed alcoholics. Psychopharmacology160, 408–413 (2002). ArticleCASPubMed Google Scholar
Johnson, B. A. et al. Ondansetron for reduction of drinking among biologically predisposed alcoholic patients - a randomized controlled trial. JAMA284, 963–971 (2000). ArticleCASPubMed Google Scholar
Dremencov, E., Weizmann, Y., Kinor, N., Gispan-Herman, I. & Yadid, G. Modulation of dopamine transmission by 5HT2C and 5HT3 receptors: a role in the antidepressant response. Curr. Drug Targets7, 165–175 (2006). ArticleCASPubMed Google Scholar
Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science274, 1527–1531 (1996). ArticleCASPubMed Google Scholar
Johnson, B. A. et al. Pharmacogenetic approach at the serotonin transporter gene as a method of reducing the severity of alcohol drinking. Am. J. Psychiatry168, 265–275 (2011). ArticlePubMedPubMed Central Google Scholar
Kenna, G. A. et al. A within group design of nontreatment seeking 5-HTTLPR genotyped alcohol dependent subjects receiving ondansetron and sertraline. Alcohol. Clin. Exp. Res.33, 315–323 (2009). ArticleCASPubMed Google Scholar
Seneviratne, C., Huang, W., Ait-Daoud, N., Li, M. D. & Johnson, B. A. Characterization of a functional polymorphism in the 3′ UTR of SLC6A4 and its association with drinking intensity. Alcohol. Clin. Exp. Res.33, 332–339 (2009). ArticleCASPubMed Google Scholar
Koob, G. F., Lloyd, G. K. & Mason, B. J. Development of pharmacotherapies for drug addiction: a Rosetta Stone approach. Nature Rev. Drug Discov.8, 500–515 (2009). ArticleCAS Google Scholar
Johnson, B. A., Ait-Daoud, N., Akhtar, F. Z. & Ma, J. Z. Oral topiramate reduces the consequences of drinking and improves the quality of life of alcohol-dependent individuals: a randomized controlled trial. Arch. Gen. Psychiatry61, 905–912 (2004). ArticleCASPubMed Google Scholar
Akil, H. et al. Endogenous opioids — biology and function. Annu. Rev. Neurosci.7, 223–255 (1984). ArticleCASPubMed Google Scholar
Snyder, S. H. & Pasternak, G. W. Historical review: opioid receptors. Trends Pharmacol. Sci.24, 198–205 (2003). ArticleCASPubMed Google Scholar
Altshuler, H. L., Phillips, P. E. & Feinhandler, D. A. Alteration of ethanol self-administration by naltrexone. Life Sci.26, 679–688 (1980). ArticleCASPubMed Google Scholar
Egli, M. Can. experimental paradigms and animal models be used to discover clinically effective medications for alcoholism? Addict. Biology10, 309–319 (2005). ArticleCAS Google Scholar
Volpicelli, J. R., Alterman, A. I., Hayashida, M. & O'Brien, C. P. Naltrexone in the treatment of alcohol dependence. Arch. Gen. Psychiatry49, 876–880 (1992). ArticleCASPubMed Google Scholar
Hunt, W. A., Barnett, L. W. & Branch, L. G. Relapse rates in addiction programs. J. Clin. Psychol.27, 455–456 (1971). ArticleCASPubMed Google Scholar
O'Malley, S. S. et al. Naltrexone and coping skills therapy for alcohol dependence. A controlled study. Arch. Gen. Psychiatry49, 881–887 (1992). ArticleCASPubMed Google Scholar
Monterosso, J. R. et al. Predicting treatment response to naltrexone: the influence of craving and family history. Am. J. Addict.10, 258–268 (2001). ArticleCASPubMed Google Scholar
Gianoulakis, C. et al. Different pituitary β-endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism. Life Sci.45, 1097–1109 (1989). ArticleCASPubMed Google Scholar
Waldhoer, M., Bartlett, S. E. & Whistler, J. L. Opioid receptors. Annu. Rev. Biochem.73, 953–990 (2004). ArticleCASPubMed Google Scholar
Di Chiara, G., Acquas, E. & Tanda, G. Ethanol as a neurochemical surrogate of conventional reinforcers: the dopamine-opioid link. Alcohol13, 13–17 (1996). ArticleCASPubMed Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier Academic Press, Amsterdam, 2005). Google Scholar