Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis (original) (raw)
Feldman, C. H. et al. Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000–2004. Arthritis Rheum.65, 753–763 (2013). ArticlePubMedPubMed Central Google Scholar
Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med.358, 929–939 (2008). ArticleCASPubMed Google Scholar
Schwartz, N., Goilav, B. & Putterman, C. The pathogenesis, diagnosis and treatment of lupus nephritis. Curr. Opin. Rheumatol.26, 502–509 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sang, A., Zheng, Y. Y. & Morel, L. Contributions of B cells to lupus pathogenesis. Mol. Immunol.62, 329–338 (2014). ArticleCASPubMed Google Scholar
Davidson, A. & Aranow, C. Lupus nephritis: lessons from murine models. Nat. Rev. Rheumatol.6, 13–20 (2010). ArticleCASPubMed Google Scholar
Reddy, V., Jayne, D., Close, D. & Isenberg, D. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res. Ther.15 (Suppl. 1), S2 (2013). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. & Anders, H. J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin. Pract. (2014).
Okamoto, A. et al. Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int.82, 969–979 (2012). ArticleCASPubMed Google Scholar
Aringer, M., Gunther, C. & Lee-Kirsch, M. A. Innate immune processes in lupus erythematosus. Clin. Immunol.147, 216–222 (2013). ArticleCASPubMed Google Scholar
Kiefer, K., Oropallo, M. A., Cancro, M. P. & Marshak-Rothstein, A. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol.90, 498–504 (2012). ArticleCASPubMedPubMed Central Google Scholar
Guerra, S. G., Vyse, T. J. & Cunninghame Graham, D. S. The genetics of lupus: a functional perspective. Arthritis Res. Ther.14, 211 (2012). ArticlePubMedPubMed Central Google Scholar
Flesher, D. L., Sun, X., Behrens, T. W., Graham, R. R. & Criswell, L. A. Recent advances in the genetics of systemic lupus erythematosus. Expert Rev. Clin. Immunol.6, 461–479 (2010). ArticlePubMedPubMed Central Google Scholar
Crispin, J. C., Hedrich, C. M. & Tsokos, G. C. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol.9, 476–484 (2013). ArticleCASPubMed Google Scholar
Deng, Y. & Tsao, B. P. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat. Rev. Rheumatol.6, 683–692 (2010). ArticleCASPubMedPubMed Central Google Scholar
Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet.40, 1059–1061 (2008). ArticleCASPubMedPubMed Central Google Scholar
Guo, Y., Orme, J. & Mohan, C. A genopedia of lupus genes - lessons from gene knockouts. Curr. Rheumatol. Rev.9, 90–99 (2013). ArticleCASPubMed Google Scholar
Niewold, T. B. et al. IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann. Rheum. Dis.71, 463–468 (2012). ArticleCASPubMed Google Scholar
Jensen, M. A. et al. Functional genetic polymorphisms in ILT3 are associated with decreased surface expression on dendritic cells and increased serum cytokines in lupus patients. Ann. Rheum. Dis.72, 596–601 (2013). ArticleCASPubMed Google Scholar
Richez, C. et al. IFN regulatory factor 5 is required for disease development in the FcgammaRIIB−/−Yaa and FcgammaRIIB−/− mouse models of systemic lupus erythematosus. J. Immunol.184, 796–806 (2010). ArticleCASPubMed Google Scholar
Qin, L. et al. Association of IRF5 gene polymorphisms and lupus nephritis in a Chinese population. Nephrology (Carlton)15, 710–713 (2010). ArticleCAS Google Scholar
Morel, L. et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc. Natl Acad. Sci. USA97, 6670–6675 (2000). ArticleCASPubMed Google Scholar
Mohan, C. et al. Genetic dissection of Sle pathogenesis: Sle3 on murine chromosome 7 impacts T cell activation, differentiation, and cell death. J. Immunol.162, 6492–6502 (1999). CASPubMed Google Scholar
Xie, S. & Mohan, C. Divide and conquer—the power of congenic strains. Clin. Immunol.110, 109–111 (2004). ArticleCASPubMed Google Scholar
Henry, T. & Mohan, C. Systemic lupus erythematosus—recent clues from congenic strains. Arch. Immunol. Ther. Exp. (Warsz.)53, 207–212 (2005). CAS Google Scholar
Mohan, C. et al. Genetic dissection of lupus pathogenesis: a recipe for nephrophilic autoantibodies. J. Clin. Invest.103, 1685–1695 (1999). ArticleCASPubMedPubMed Central Google Scholar
Morel, L. et al. Functional dissection of systemic lupus erythematosus using congenic mouse strains. J. Immunol.158, 6019–6028 (1997). CASPubMed Google Scholar
Vaughn, S. E. et al. Genetic susceptibility to lupus: the biological basis of genetic risk found in B cell signaling pathways. J. Leukoc. Biol.92, 577–591 (2012). ArticleCASPubMedPubMed Central Google Scholar
Avalos, A. M., Meyer-Wentrup, F. & Ploegh, H. L. B-cell receptor signaling in lymphoid malignancies and autoimmunity. Adv. Immunol.123, 1–49 (2014). ArticleCASPubMed Google Scholar
Shao, W. H. & Cohen, P. L. The role of tyrosine kinases in systemic lupus erythematosus and their potential as therapeutic targets. Expert Rev. Clin. Immunol.10, 573–582 (2014). ArticleCASPubMedPubMed Central Google Scholar
Castillejo-Lopez, C. et al. Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK. Ann. Rheum. Dis.71, 136–142 (2012). ArticleCASPubMed Google Scholar
Coughlin, J. J. et al. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J. Immunol.175, 7179–7184 (2005). ArticleCASPubMed Google Scholar
Shao, B. et al. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-βI and prooxidant enzyme NADPH oxidase. Redox Biol.2, 694–701 (2014). ArticleCASPubMedPubMed Central Google Scholar
Liu, L. et al. PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol. Biol. Cell25, 1446–145 (2014). Article Google Scholar
Zheng, Y. et al. Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood105, 3648–3654. (2005). ArticleCASPubMed Google Scholar
Roberts, D. M. et al. A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol. Cell Biol.24, 10515–10528 (2004). ArticleCASPubMedPubMed Central Google Scholar
Oleksyn, D. et al. Protein kinase Cβ is required for lupus development in Sle mice. Arthritis Rheum.65, 1022–1031 (2013). ArticleCASPubMed Google Scholar
Yu, C. C., Mamchak, A. A. & DeFranco, A. L. Signaling mutations and autoimmunity. Curr. Dir. Autoimmun.6, 61–88 (2003). ArticlePubMed Google Scholar
Lamagna, C. et al. B cell-specific loss of Lyn kinase leads to autoimmunity. J. Immunol.192, 919–928 (2014). ArticleCASPubMed Google Scholar
Hua, Z. et al. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. J. Immunol.192, 875–885 (2014). ArticleCASPubMed Google Scholar
Yu, C. C., Yen, T. S., Lowell, C. A. & DeFranco, A. L. Lupus-like kidney disease in mice deficient in the Src family tyrosine kinases Lyn and Fyn. Curr. Biol.11, 34–38 (2001). ArticleCASPubMed Google Scholar
Samuelson, E. M. et al. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells. Immunol. Cell Biol.90, 620–629 (2012). ArticleCASPubMed Google Scholar
Samuelson, E. M. et al. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE9, e92054 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hata, A. et al. Functional analysis of Csk in signal transduction through the B-cell antigen receptor. Mol. Cell Biol.14, 7306–7313 (1994). ArticleCASPubMedPubMed Central Google Scholar
Manjarrez-Orduno, N. et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat. Genet.44, 1227–1230 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dai, X. et al. A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models. J. Clin. Invest.123, 2024–2036 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bayley, R. et al. The autoimmune-associated genetic variant PTPN22 R620W enhances neutrophil activation and function in patients with rheumatoid arthritis and healthy individuals. Ann. Rheum. Dis.http://dx.doi.org/10.1136/annrheumdis-2013-204796.
Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet.43, 902–907 (2011). ArticleCASPubMed Google Scholar
Brownlie, R. J. et al. Lack of the phosphatase PTPN22 increases adhesion of murine regulatory T cells to improve their immunosuppressive function. Sci. Signal.5, ra87 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ivashkiv, L. B. PTPN22 in autoimmunity: different cell and different way. Immunity25, 91–93 (2013). ArticleCAS Google Scholar
Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature416, 603–607 (2002). ArticleCASPubMed Google Scholar
Mohan, C., Adams, S., Stanik, V. & Datta, S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med.177, 1367–1381 (1993). ArticleCASPubMed Google Scholar
Barcellos, L. F. et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet.5, e1000696 (2009). ArticleCASPubMedPubMed Central Google Scholar
Graham, R. R. et al. Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur. J. Hum. Genet.15, 823–830 (2007). ArticleCASPubMed Google Scholar
Farres, M. N., Al-Zifzaf, D. S., Aly, A. A. & Abd Raboh, N. M. OX40/OX40L in systemic lupus erythematosus: association with disease activity and lupus nephritis. Ann. Saudi Med.31, 29–34 (2011). ArticlePubMedPubMed Central Google Scholar
Yang, W. et al. Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. Am. J. Hum. Genet.92, 41–51 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol.186, 1849–1860 (2011). ArticleCASPubMed Google Scholar
Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med.14, 748–755 (2008). ArticleCASPubMed Google Scholar
Jacobi, A. M. et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum.48, 1332–1342 (2003). ArticlePubMed Google Scholar
Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet.6, e1000841 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, D. et al. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int. Immunol.17, 1179–1191 (2005). ArticleCASPubMed Google Scholar
Zhou, Z. et al. Blimp-1 siRNA inhibits B cell differentiation and prevents the development of lupus in mice. Hum. Immunol.74, 297–301 (2013). ArticleCASPubMed Google Scholar
Amarilyo, G., Lourenco, E. V., Shi, F. D. & La Cava, A. IL-17 promotes murine lupus. J. Immunol.193, 540–543 (2014). ArticleCASPubMed Google Scholar
Schmidt, T. et al. Function of the Th17/interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol.67, 475–487 (2015). ArticleCASPubMed Google Scholar
Tan, W. et al. Association of PPP2CA polymorphisms with systemic lupus erythematosus susceptibility in multiple ethnic groups. Arthritis Rheum.63, 2755–2763 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lashine, Y. A., Salah, S., Aboelenein, H. R. & Abdelaziz, A. I. Correcting the expression of miRNA-155 represses PP2Ac and enhances the release of IL-2 in PBMCs of juvenile SLE patients. Lupus24, 240–247 (2014). ArticleCASPubMed Google Scholar
Crispin, J. C. et al. Cutting edge: protein phosphatase 2A confers susceptibility to autoimmune disease through an IL-17-dependent mechanism. J. Immunol.188, 3567–3571 (2012). ArticleCASPubMedPubMed Central Google Scholar
Apostolidis, S. A. et al. Protein phosphatase 2A enables expression of interleukin 17 (IL-17) through chromatin remodeling. J. Biol. Chem.288, 26775–26784 (2013). ArticleCASPubMedPubMed Central Google Scholar
Richman, I. B. et al. European genetic ancestry is associated with a decreased risk of lupus nephritis. Arthritis Rheum.64, 3374–3382 (2012). ArticlePubMed Google Scholar
Taylor, K. E. et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet.7, e1001311 (2011). ArticleCASPubMedPubMed Central Google Scholar
Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet.4, e1000084 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jacob, C. O. et al. Pivotal role of Stat4 and Stat6 in the pathogenesis of the lupus-like disease in the New Zealand mixed 2328 mice. J. Immunol.171, 1564–1571 (2003). ArticleCASPubMed Google Scholar
Rajabi, P., Alaee, M., Mousavizadeh, K. & Samadikuchaksaraei, A. Altered expression of TNFSF4 and TRAF2 mRNAs in peripheral blood mononuclear cells in patients with systemic lupus erythematosus: association with atherosclerotic symptoms and lupus nephritis. Inflamm. Res.61, 1347–1354 (2012). ArticleCASPubMed Google Scholar
Zhou, X. J. et al. A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. Biomed. Res. Int.2013, 597921 (2013). PubMedPubMed Central Google Scholar
Sanchez, E. et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann. Rheum. Dis.70, 1752–1757 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fairhurst, A. M. et al. Type I interferons produced by resident renal cells may promote end-organ disease in autoantibody-mediated glomerulonephritis. J. Immunol.183, 6831–6838 (2009). ArticleCASPubMedPubMed Central Google Scholar
Triantafyllopoulou, A. et al. Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc. Natl Acad. Sci. USA107, 3012–3017 (2010). ArticlePubMed Google Scholar
He, C. F. et al. TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus19, 1181–1186 (2010). ArticlePubMed Google Scholar
Frucht, D. M. et al. STAT4 is expressed in activated peripheral blood monocytes, dendritic cells, and macrophages at sites of Th1-mediated inflammation. J. Immunol.164, 4659–4664 (2000). ArticleCASPubMed Google Scholar
Kaplan, M. H. STAT4: a critical regulator of inflammation in vivo. Immunol. Res.31, 231–242 (2005). ArticleCASPubMed Google Scholar
Dang, J. et al. Gene-gene interactions of IRF5, STAT4, IKZF1 and ETS1 in systemic lupus erythematosus. Tissue Antigens83, 401–408 (2014). ArticleCASPubMed Google Scholar
Karassa, F. B. et al. The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int.63, 1475–1482 (2003). ArticleCASPubMed Google Scholar
Brown, E. E., Edberg, J. C. & Kimberly, R. P. Fc receptor genes and the systemic lupus erythematosus diathesis. Autoimmunity40, 567–581 (2007). ArticleCASPubMed Google Scholar
Floto, R. A. et al. Loss of function of a lupus-associated FcgammaRIIb polymorphism through exclusion from lipid rafts. Nat. Med.11, 1056–1058 (2005). ArticleCASPubMed Google Scholar
Breunis, W. B. et al. Copy number variation at the FCGR locus includes FCGR3A, FCGRXXXXX2C and FCGR3B but not FCGR2A and FCGR2B. Hum. Mutat.30, E640–E650 (2009). ArticlePubMed Google Scholar
Fanciulli, M. et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat. Genet.39, 721–723 (2007). ArticleCASPubMedPubMed Central Google Scholar
Morris, D. L. et al. Evidence for both copy number and allelic (NA1/NA2) risk at the FCGR3B locus in systemic lupus erythematosus. Eur. J. Hum. Genet.18, 1027–1031 (2010). ArticleCASPubMedPubMed Central Google Scholar
Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science279, 1052–1054 (1998). ArticleCASPubMed Google Scholar
Bergtold, A. et al. FcR-bearing myeloid cells are responsible for triggering murine lupus nephritis. J. Immunol.177, 7287–7295 (2006). ArticleCASPubMed Google Scholar
Sánchez-Mejorada, G. & Rosales, C. Signal transduction by immunoglobulin Fc receptors. J. Leukoc. Biol.63, 521–533 (1998). ArticlePubMed Google Scholar
Celhar, T., Magalhães, R. & Fairhurst, A. M. TLR7 and TLR9 in SLE: when sensing self goes wrong. Immunol. Res.53, 58–77 (2012). ArticleCASPubMed Google Scholar
Shrivastav, M. & Niewold, T. B. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol.4, 319 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. J. et al. Association of TLR9 gene polymorphisms with lupus nephritis in a Chinese Han population. Clin. Exp. Rheumatol.28, 397–400 (2010). PubMed Google Scholar
Jacob, C. O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA106, 6256–6261 (2009). ArticlePubMed Google Scholar
Barrat, F. J. et al. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur. J. Immunol.37, 3582–3586 (2007). ArticleCASPubMed Google Scholar
Christensen, S. R. et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity25, 417–428 (2006). ArticleCASPubMed Google Scholar
Verstrepen, L. et al. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem. Pharmacol.78, 105–114 (2009). ArticleCASPubMed Google Scholar
Lewis, M. J. et al. BE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am. J. Hum. Genet.96, 221–234 (2015). ArticleCASPubMedPubMed Central Google Scholar
Zuo, X. B. et al. Variants in TNFSF4, TNFAIP3, TNIP1, BLK, SLC15A4 and UBE2L3 interact to confer risk of systemic lupus erythematosus in Chinese population. Rheumatol. Int.34, 459–464 (2014). ArticleCASPubMed Google Scholar
Hovelmeyer, N. et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur. J. Immunol.41, 595–601 (2011). ArticleCASPubMed Google Scholar
Bates, J. S. et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun.10, 470–477 (2009). ArticleCASPubMedPubMed Central Google Scholar
Fagerholm, S. C. et al. The CD11b-integrin (ITGAM) and systemic lupus erythematosus. Lupus22, 657–663 (2013). ArticleCASPubMed Google Scholar
Ross, G. D. & Ve˘tvicka, V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin. Exp. Immunol.92, 181–184 (1993). ArticleCASPubMedPubMed Central Google Scholar
Kim-Howard, X. et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann. Rheum. Dis.69, 1329–1332 (2010). ArticlePubMed Google Scholar
Yang, W. et al. ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum. Mol. Genet.18, 2063–2070 (2009). ArticleCASPubMedPubMed Central Google Scholar
Orme, J. & Mohan, C. Macrophages and neutrophils in SLE-An online molecular catalog. Autoimmun. Rev.11, 365–372 (2012). ArticleCASPubMed Google Scholar
Crispín, J. C., Hedrich, C. M. & Tsokos, G. C. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol.9, 476–484 (2013). ArticleCASPubMed Google Scholar
Rekvig, O. P. & Van der Vlag, J. The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin. Immunopathol.36, 301–311 (2014). ArticleCASPubMed Google Scholar
Zhou, T. B. et al. Relationship between angiotensin-converting enzyme insertion/deletion gene polymorphism and systemic lupus erythematosus/lupus nephritis: a systematic review and metaanalysis. J. Rheumatol.39, 686–693 (2012). ArticleCASPubMed Google Scholar
Chung, S. A. et al. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet.7, e1001323 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, K. et al. Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J. Clin. Invest.119, 911–923 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ciferska, H. et al. Expression of nucleic acid binding Toll-like receptors in control, lupus and transplanted kidneys--a preliminary pilot study. Lupus17, 580–585 (2008). ArticleCASPubMed Google Scholar
Papadimitraki, E. D. et al. Glomerular expression of toll-like receptor-9 in lupus nephritis but not in normal kidneys: implications for the amplification of the inflammatory response. Lupus18, 831–835 (2009). ArticleCASPubMed Google Scholar
Patole, P. S. et al. Expression and regulation of Toll-like receptors in lupus-like immune complex glomerulonephritis of MRL-Fas(lpr) mice. Nephrol. Dial. Transplant.21, 3062–3073 (2006). ArticleCASPubMed Google Scholar
Liu, S. et al. TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells. Acta Physiol. (Oxf.)199, 339–346 (2010). CAS Google Scholar
Benigni, A. et al. Involvement of renal tubular Toll-like receptor 9 in the development of tubulointerstitial injury in systemic lupus. Arthritis Rheum.56, 1569–1578 (2007). ArticleCASPubMed Google Scholar
Machida, H. et al. Expression of Toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol. Dial. Transplant.25, 2530–2537 (2010). ArticleCASPubMed Google Scholar
Frieri, M. et al. Toll-like receptor 9 and vascular endothelial growth factor levels in human kidneys from lupus nephritis patients. J. Nephrol.25, 1041–1046 (2012). ArticleCASPubMed Google Scholar
Lichtnekert, J. et al. Trif is not required for immune complex glomerulonephritis: dying cells activate mesangial cells via Tlr2/Myd88 rather than Tlr3/Trif. Am. J. Physiol. Renal Physiol.296, F867–F874 (2009). ArticleCASPubMed Google Scholar
Kunter, U. et al. Combined expression of A1 and A20 achieves optimal protection of renal proximal tubular epithelial cells. Kidney Int.68, 1520–1532 (2005). ArticleCASPubMed Google Scholar
Lutz, J. et al. The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J. Mol. Med. (Berl.)86, 1329–1339 (2008). ArticleCAS Google Scholar
da Silva, C. G. et al. Hepatocyte growth factor preferentially activates the anti-inflammatory arm of NF-κB signaling to induce A20 and protect renal proximal tubular epithelial cells from inflammation. J. Cell Physiol.227, 1382–1390 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shimada, M. et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol. Dial. Transplant.27, 81–89 (2012). ArticleCASPubMed Google Scholar
Ishimoto, T. et al. Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol. Dial. Transplant.28, 1439–1446 (2013). ArticleCASPubMed Google Scholar
Ichinose, K. et al. Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J. Immunol.187, 5500–5504 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fu, S. M., Deshmukh, U. S. & Gaskin, F. Pathogenesis of systemic lupus erythematosus revisited 2011: end organ resistance to damage, autoantibody initiation and diversification, and HLA-DR. J. Autoimmun.37, 104–112 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ge, Y. et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis. J. Exp. Med.210, 2387–2401 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dai, C. et al. Genetics of systemic lupus erythematosus: immune responses and end organ resistance to damage. Curr. Opin. Immunol.31, 87–96 (2014). ArticleCASPubMed Google Scholar
Guo, Y., Orme, J. & Mohan, C. A genopedia of lupus genes - lessons from gene knockouts. Curr. Rheumatol. Rev.9, 90–99 (2013). ArticleCASPubMed Google Scholar
Shao, W. H. & Cohen, P. L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther.13, 202 (2011). ArticlePubMedPubMed Central Google Scholar
Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest.120, 1084–1096 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yaniv, G. et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients. Autoimmun. Rev.14, 75–79 (2015). ArticleCASPubMed Google Scholar
Mehra, S. & Fritzler, M. J. The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J. Immunol. Res.2014, 368274 (2014). ArticleCASPubMedPubMed Central Google Scholar
Gatto, M. et al. Emerging and critical issues in the pathogenesis of lupus. Autoimmun. Rev.12, 523–536 (2013). ArticleCASPubMed Google Scholar
Rekvig, O. P. & Van der Vlag, J. The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin. Immunopathol.36, 301–311 (2014). ArticleCASPubMed Google Scholar
Munoz, L. E. et al. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol.6, 280–289 (2010). ArticlePubMed Google Scholar
Cohen, P. L. et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med.196, 135–140 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez-Manzanet, R. et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc. Natl Acad. Sci. USA107, 8706–8711 (2010). ArticleCASPubMed Google Scholar
Knight, J. S. & Kaplan, M. J. Lupus neutrophils: 'NET' gain in understanding lupus pathogenesis. Curr. Opin. Rheumatol.24, 441–450 (2012). ArticleCASPubMed Google Scholar
Magna, M. & Pisetsky, D. S. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med.20, 138–146 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cunninghame Graham, D. S., Akil, M. & Vyse, T. J. Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families. Rheumatology (Oxford)46, 927–930 (2007). ArticleCAS Google Scholar
Mevorach, D. Clearance of dying cells and systemic lupus erythematosus: the role of C1q and the complement system. Apoptosis15, 1114–1123 (2010). ArticleCASPubMed Google Scholar
Leffler, J., Bengtsson, A. A. & Blom, A. M. The complement system in systemic lupus erythematosus: an update. Ann. Rheum. Dis.73, 1601–1606 (2014). ArticleCASPubMed Google Scholar
Liu, Y. & Anders, H. J. Lupus nephritis: from pathogenesis to targets for biologic treatment. Nephron Clin. Pract.128, 224–231 (2014). ArticleCASPubMed Google Scholar
Putterman, C. New approaches to the renal pathogenicity of anti-DNA antibodies in systemic lupus erythematosus. Autoimmun. Rev.2, 7–11 (2004). ArticleCAS Google Scholar
Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet.40, 211–216 (2008). ArticleCASPubMed Google Scholar
Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet.6, e1000841 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sanchez, E. et al. Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis Rheum.63, 3493–3501 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med.358, 900–909 (2008). ArticleCASPubMed Google Scholar
Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet.41, 1234–1237 (2009). ArticleCASPubMed Google Scholar
Guthridge, J. M. et al. Two functional lupus-associated BLK promoter variants control cell-type- and developmental-stage-specific transcription. Am. J. Hum. Genet.94, 586–598 (2014). ArticleCASPubMedPubMed Central Google Scholar
Okada, Y. et al. A genome-wide association study identified AFF1 as a susceptibility locus for systemic lupus eyrthematosus in Japanese. PLoS Genet.8, e1002455 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lee, H. S. et al. Ethnic specificity of lupus-associated loci identified in a genome-wide association study in Korean women. Ann. Rheum. Dis.73, 1240–1245 (2014). ArticleCASPubMed Google Scholar
Liu, P. et al. IL-10 gene polymorphisms and susceptibility to systemic lupus erythematosus: a meta-analysis. PLoS One8, e69547 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet.41, 1228–1233 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. J. et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann. Rheum. Dis.70, 1330–1337 (2011). ArticleCASPubMed Google Scholar
Sheng, Y. J. et al. Follow-up study identifies two novel susceptibility loci PRKCB and 8p11.21 for systemic lupus erythematosus. Rheumatology (Oxford)50, 682–688 (2011). ArticleCAS Google Scholar
Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet.37, 1317–1319 (2005). ArticleCASPubMed Google Scholar
Arechiga, A. F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol.182, 3343–3347 (2009). ArticleCASPubMedPubMed Central Google Scholar
Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest.121, 3635–44 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, C. et al. Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations. Eur. J. Hum. Genet.21, 994–999 (2013). ArticleCASPubMed Google Scholar
Namjou, B. et al. High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum.60, 1085–1095 (2009). ArticleCASPubMedPubMed Central Google Scholar
Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet.40, 204–210 (2008). ArticleCASPubMedPubMed Central Google Scholar
Molineros, J. E. et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet.9, e1003222 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cunninghame Graham, D. S. et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet.7, e1002341 (2011). ArticleCASPubMedPubMed Central Google Scholar
Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet.45, 1238–1243 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kaufman, K. M. et al. Fine mapping of Xq28: both MECP2 and IRAK1 contribute to risk for systemic lupus erythematosus in multiple ancestral groups. Ann. Rheum. Dis.72, 437–444 (2013). ArticleCASPubMed Google Scholar
Koelsch, K. A. et al. Functional characterization of the MECP2/IRAK1 lupus risk haplotype in human T cells and a human MECP2 transgenic mouse. J. Autoimmun.41, 168–174 (2013). ArticleCASPubMedPubMed Central Google Scholar
Graham, R. R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet.38, 550–555 (2006). ArticleCASPubMed Google Scholar
Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA104, 6758–6763 (2007). ArticleCASPubMed Google Scholar
Sigurdsson, S. et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum. Mol. Genet.17, 872–881 (2008). ArticleCASPubMed Google Scholar
Lofgren, S. E. et al. Promoter insertion/deletion in the IRF5 gene is highly associated with susceptibility to systemic lupus erythematosus in distinct populations, but exerts a modest effect on gene expression in peripheral blood mononuclear cells. J. Rheumatol.37, 574–578 (2010). ArticleCASPubMed Google Scholar
Salloum, R. et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum.62, 553–561 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baccala, R. et al. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proc. Natl Acad. Sci. USA110, 2940–2945 (2013). ArticlePubMed Google Scholar
Lessard, C. J. et al. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am. J. Hum. Genet.90, 648–660 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shen, N. et al. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc. Natl Acad. Sci. USA107, 15838–15843 (2010). ArticlePubMed Google Scholar
Deng, Y. et al. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus. PLoS Genet.9, e1003336 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. Association study of TLR-9 polymorphisms and systemic lupus erythematosus in northern Chinese Han population. Gene533, 385–388 (2014). ArticleCASPubMed Google Scholar
Wang, S. et al. An enhancer element harboring variants associated with systemic lupus erythematosus engages the TNFAIP3 promoter to influence A20 expression. PLoS Genet.9, e1003750 (2013). ArticleCASPubMedPubMed Central Google Scholar
Agik, S. et al. The autoimmune disease risk allele of UBE2L3 in African American patients with systemic lupus erythematosus: a recessive effect upon subphenotypes. J. Rheumatol.39, 73–8 (2012). ArticleCASPubMed Google Scholar
Shin, H. D. et al. Common DNase I polymorphism associated with autoantibody production among systemic lupus erythematosus patients. Hum. Mol. Genet.13, 2343–2350 (2004). ArticleCASPubMed Google Scholar
Han, S. et al. Evaluation of imputation-based association in and around the integrin-alpha-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE). Hum. Mol. Genet.18, 1171–1180 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rhodes, B. et al. The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes. Ann. Rheum. Dis.71, 2028–2034 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fossati-Jimack, L. et al. Phagocytosis is the main CR3-mediated function affected by the lupus-associated variant of CD11b in human myeloid cells. PLoS One8, e57082 (2013). ArticleCASPubMedPubMed Central Google Scholar