Genetic susceptibility to systemic lupus erythematosus in the genomic era (original) (raw)
Deapen, D. et al. A revised estimate of twin concordance in SLE. Arthritis Rheum.35, 311–318 (1992). ArticleCASPubMed Google Scholar
Alarcón-Segovia, D. et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum.52, 1138–1147 (2005). ArticlePubMed Google Scholar
Nath, S. K. et al. A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat. Genet.40, 152–154 (2008). ArticleCASPubMed Google Scholar
Hom, G. et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N. Engl. J. Med.358, 900–909 (2008). ArticleCAS Google Scholar
Harley, J. B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet.40, 204–210 (2008). ArticleCAS Google Scholar
Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet.40, 211–216 (2008). ArticleCASPubMed Google Scholar
Graham, R. R. et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet.40, 1059–1061 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet.41, 1228–1233 (2009). ArticleCASPubMedPubMed Central Google Scholar
Han, J. W. et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet.41, 1234–1237 (2009). ArticleCASPubMed Google Scholar
Yang, W. et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet.6, e1000841 (2010). ArticleCASPubMedPubMed Central Google Scholar
Moser, K. L., Kelly, J. A., Lessard, C. J. & Harley, J. B. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun.10, 373–379 (2009). ArticleCASPubMedPubMed Central Google Scholar
Harley, I. T., Kaufman, K. M., Langefeld, C. D., Harley, J. B. & Kelly, J. A. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat. Rev. Genet.10, 285–290 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rhodes, B. & Vyse, T. J. The genetics of SLE: an update in the light of genome-wide association studies. Rheumatology (Oxford)47, 1603–1611 (2008). ArticleCAS Google Scholar
Crow, M. K. Collaboration, genetic associations, and lupus erythematosus. N. Engl. J. Med.358, 956–961 (2008). ArticleCASPubMed Google Scholar
Goldberg, M. A., Arnett, F. C., Bias, W. B. & Shulman, L. E. Histocompatibility antigens in systemic lupus erythematosus. Arthritis Rheum.19, 129–132 (1976). ArticleCASPubMed Google Scholar
The MHC sequencing consortium. Complete sequence and gene map of a human major histocompatibility complex. Nature401, 921–923 (1999).
Tsao, B. P. in Dubois' Lupus Erythematosus, 6th edn (eds Wallace, D. J. & Hahn, B. H.) 97–120 (Lippincott Williams & Wilkins, Philadelphia, 2002). Google Scholar
Graham, R. R. et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am. J. Hum. Genet.71, 543–553 (2002). ArticleCASPubMedPubMed Central Google Scholar
Doherty, D. G. et al. Major histocompatibility complex genes and susceptibility to systemic lupus erythematosus in southern Chinese. Arthritis Rheum.35, 641–646 (1992). ArticleCASPubMed Google Scholar
Hong, G. H. et al. Association of complement C4 and HLA-DR alleles with systemic lupus erythematosus in Koreans. J. Rheumatol.21, 442–447 (1994). CASPubMed Google Scholar
Lee, H. S. et al. Independent association of HLA-DR and Fcγ receptor polymorphisms in Korean patients with systemic lupus erythematosus. Rheumatology (Oxford)42, 1501–1507 (2003). ArticleCAS Google Scholar
Jiang, C. et al. Differential responses to Smith D autoantigen by mice with HLA-DR and HLA-DQ transgenes: dominant responses by HLA-DR3 transgenic mice with diversification of autoantibodies to small nuclear ribonucleoprotein, double-stranded DNA, and nuclear antigens. J. Immunol.184, 1085–1091 (2010). ArticleCASPubMed Google Scholar
Wu, Y. L., Hauptmann, G., Viguier, M. & Yu, C. Y. Molecular basis of complete complement C4 deficiency in two North-African families with systemic lupus erythematosus. Genes Immun.10, 433–445 (2009). ArticleCASPubMedPubMed Central Google Scholar
Truedsson, L., Bengtsson, A. A. & Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity40, 560–566 (2007). ArticleCASPubMed Google Scholar
Schifferli, J. A., Steiger, G., Paccaud, J. P., Sjöholm, A. G. & Hauptmann, G. Difference in the biological properties of the two forms of the fourth component of human complement (C4). Clin. Exp. Immunol.63, 473–477 (1986). CASPubMedPubMed Central Google Scholar
Blanchong, C. A. et al. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologs, Slp and C4. Int. Immunopharmacol.1, 365–392 (2001). ArticleCASPubMed Google Scholar
Pickering, M. C. & Walport, M. J. Links between complement abnormalities and systemic lupus erythematosus. Rheumatology (Oxford)39, 133–141 (2000). ArticleCAS Google Scholar
Yang, Y. et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am. J. Hum. Genet.80, 1037–1054 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fernando, M. M. et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet.3, e192 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yang, Z., Shen, L., Dangel, A. W., Wu, L. C. & Yu, C. Y. Four ubiquitously expressed genes, _RD(D6S45)_–_SKI2W(SKIV2L)–_DOM3Z_–_RP1(D6S60E), are present between complement component genes factor B and C4 in the class III region of the HLA. Genomics53, 338–347 (1998). ArticleCASPubMed Google Scholar
Barcellos, L. F. et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet.5, e1000696 (2009). ArticleCASPubMedPubMed Central Google Scholar
Graham, R. R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet.38, 550–555 (2006). ArticleCASPubMed Google Scholar
Graham, R. R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl Acad. Sci. USA104, 6758–6763 (2007). ArticleCASPubMed Google Scholar
Sigurdsson, S. et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum. Mol. Genet.17, 872–881 (2008). ArticleCASPubMed Google Scholar
Demirci, F. Y. et al. Association of a common interferon regulatory factor 5 (IRF5) variant with increased risk of systemic lupus erythematosus (SLE). Ann. Hum. Genet.71, 308–311 (2007). ArticleCASPubMed Google Scholar
Shin, H. D. et al. Replication of the genetic effects of IFN regulatory factor 5 (IRF5) on systemic lupus erythematosus in a Korean population. Arthritis Res. Ther.9, R32 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kawasaki, A. et al. Association of IRF5 polymorphisms with systemic lupus erythematosus in a Japanese population: support for a crucial role of intron 1 polymorphisms. Arthritis Rheum.58, 826–834 (2008). ArticleCASPubMed Google Scholar
Siu, H. O. et al. Association of a haplotype of IRF5 gene with systemic lupus erythematosus in Chinese. J. Rheumatol.35, 360–362 (2008). CASPubMed Google Scholar
Kelly, J. A. et al. Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans. Genes Immun.9, 187–194 (2008). ArticleCASPubMed Google Scholar
Löfgren, S. E. et al. Promoter insertion/deletion in the IRF5 gene is highly associated with susceptibility to systemic lupus erythematosus in distinct populations, but exerts a modest effect on gene expression in peripheral blood mononuclear cells. J. Rheumatol.37, 574–578 (2010). ArticleCASPubMed Google Scholar
Niewold, T. B. et al. Association of the IRF5 risk haplotype with high serum interferon-α activity in systemic lupus erythematosus patients. Arthritis Rheum.58, 2481–2487 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rullo, O. J. et al. Association of IRF5 polymorphisms with activation of the interferon-α pathway. Ann. Rheum. Dis.69, 611–617 (2010). ArticleCASPubMed Google Scholar
Richez, C. et al. IFN regulatory factor 5 is required for disease development in the FcγRIIB−/−Yaa and FcγRIIB−/− mouse models of systemic lupus erythematosus. J. Immunol.184, 796–806 (2010). ArticleCASPubMed Google Scholar
Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med.357, 977–986 (2007). ArticleCASPubMedPubMed Central Google Scholar
Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet.4, e1000084 (2008). ArticleCASPubMedPubMed Central Google Scholar
Palomino-Morales, R. J. et al. STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun.9, 379–382 (2008). ArticleCASPubMed Google Scholar
Kawasaki, A. et al. Role of STAT4 polymorphisms in systemic lupus erythematosus in a Japanese population: a case-control association study of the STAT1–STAT4 region. Arthritis Res. Ther.10, R113 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sigurdsson, S. et al. A risk haplotype of STAT4 for systemic lupus erythematosus is overexpressed, correlates with anti-dsDNA and shows additive effects with two risk alleles of IRF5. Hum. Mol. Genet.17, 2868–2876 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kariuki, S. N. et al. Cutting edge: autoimmune disease risk variant of STAT4 confers increased sensitivity to IFN-α in lupus patients in vivo. J. Immunol.182, 34–38 (2009). ArticleCASPubMedPubMed Central Google Scholar
Abelson, A. K. et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann. Rheum. Dis.68, 1746–1753 (2009). ArticleCASPubMed Google Scholar
Namjou, B. et al. High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum.60, 1085–1095 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cohen, S., Dadi, H., Shaoul, E., Sharfe, N. & Roifman, C. M. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood93, 2013–2024 (1999). CASPubMed Google Scholar
Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet.36, 337–338 (2004). ArticleCASPubMed Google Scholar
Orrú, V. et al. A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Hum. Mol. Genet.18, 569–579 (2009). ArticleCASPubMed Google Scholar
Kariuki, S. N., Crow, M. K. & Niewold, T. B. The PTPN22 C1858T polymorphism is associated with skewing of cytokine profiles toward high interferon-α activity and low tumor necrosis factor α levels in patients with lupus. Arthritis Rheum.58, 2818–2823 (2008). ArticlePubMedPubMed Central Google Scholar
Bredius, R. G. et al. Phagocytosis of Staphylococcus aureus and Hemophilus influenzae type B opsonized with polyclonal human IgG1 and IgG2 antibodies. Functional hFcγ RIIa polymorphism to IgG2. J. Immunol.151, 1463–1472 (1993). CASPubMed Google Scholar
Duits, A. J. et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum.38, 1832–1836 (1995). ArticleCASPubMed Google Scholar
Yap, S. N., Phipps, M. E., Manivasagar, M., Tan, S. Y. & Bosco, J. J. Human Fcγ receptor IIA (FcγRIIA) genotyping and association with systemic lupus erythematosus (SLE) in Chinese and Malays in Malaysia. Lupus8, 305–310 (1999). ArticleCASPubMed Google Scholar
Chen, J. Y. et al. Fcγ receptor IIa, IIIa, and IIIb polymorphisms of systemic lupus erythematosus in Taiwan. Ann. Rheum. Dis.63, 877–880 (2004). ArticleCASPubMedPubMed Central Google Scholar
Salmon, J. E. et al. Fcγ RIIA alleles are heritable risk factors for lupus nephritis in African Americans. J. Clin. Invest.97, 1348–1354 (1996). ArticleCASPubMedPubMed Central Google Scholar
Song, Y. W. et al. Abnormal distribution of Fcγ receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum.41, 421–426 (1998). ArticleCASPubMed Google Scholar
Koene, H. R. et al. The FcγRIIIA-158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum.41, 1813–1818 (1998). ArticleCASPubMed Google Scholar
Alarcón, G. S. et al. Time to renal disease and end-stage renal disease in PROFILE: a multiethnic lupus cohort. PLoS Med.3, e396 (2006). ArticlePubMedPubMed Central Google Scholar
Zuniga, R. et al. Identification of IgG subclasses and C-reactive protein in lupus nephritis: the relationship between the composition of immune deposits and FCγ receptor type IIA alleles. Arthritis Rheum.48, 460–470 (2003). ArticleCASPubMed Google Scholar
Magnusson, V. et al. Both risk alleles for FcγRIIA and FcγRIIIA are susceptibility factors for SLE: a unifying hypothesis. Genes Immun.5, 130–137 (2004). ArticleCASPubMed Google Scholar
Sullivan, K. E. et al. Analysis of polymorphisms affecting immune complex handling in systemic lupus erythematosus. Rheumatology (Oxford)42, 446–452 (2003). ArticleCAS Google Scholar
Kyogoku, C. et al. Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum.46, 1242–1254 (2002). ArticleCASPubMed Google Scholar
Siriboonrit, U. et al. Association of Fcγ receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Antigens61, 374–383 (2003). ArticleCASPubMed Google Scholar
Chu, Z. T. et al. Association of Fcγ receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens63, 21–27 (2004). ArticleCASPubMed Google Scholar
Li, X. et al. A novel polymorphism in the Fcγ receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum.48, 3242–3252 (2003). ArticleCASPubMed Google Scholar
Kyogoku, C., Tsuchiya, N., Wu, H., Tsao, B. P. & Tokunaga, K. Association of Fcγ receptor IIA, but not IIB and IIIA, polymorphisms with systemic lupus erythematosus: a family-based association study in Caucasians. Arthritis Rheum.50, 671–673 (2004). ArticleCASPubMed Google Scholar
Magnusson, V. et al. Polymorphisms of the Fcγ receptor type IIB gene are not associated with systemic lupus erythematosus in the Swedish population. Arthritis Rheum.50, 1348–1350 (2004). ArticleCASPubMed Google Scholar
Floto, R. A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med.11, 1056–1058 (2005). ArticleCASPubMed Google Scholar
Su, K. et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. II. Differential binding of GATA4 and Yin-Yang1 transcription factors and correlated receptor expression and function. J. Immunol.172, 7192–7199 (2004). ArticleCASPubMed Google Scholar
Salmon, J. E., Edberg, J. C. & Kimberly, R. P. Fcγ receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J. Clin. Invest.85, 1287–1295 (1990). ArticleCASPubMedPubMed Central Google Scholar
Hatta, Y. et al. Association of Fcγ receptor IIIB, but not of Fcγ receptor IIA and IIIA polymorphisms with systemic lupus erythematosus in Japanese. Genes Immun.1, 53–60 (1999). ArticleCASPubMed Google Scholar
Clark, M. R., Liu, L., Clarkson, S. B., Ory, P. A. & Goldstein, I. M. An abnormality of the gene that encodes neutrophil Fc receptor III in a patient with systemic lupus erythematosus. J. Clin. Invest.86, 341–346 (1990). ArticleCASPubMedPubMed Central Google Scholar
Koene, H. R., Kleijer, M., Roos, D., de Hasse, M. & Von dem Borne, A. E. FcγRIIIB gene duplication: evidence for presence and expression of three distinct FcγRIIIB genes in NA(1+,2+)SH(+) individuals. Blood91, 673–679 (1998). CASPubMed Google Scholar
Willcocks, L. C. et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J. Exp. Med.205, 1573–1582 (2008). ArticleCASPubMedPubMed Central Google Scholar
Walport, M. J., Davies, K. A. & Botto, M. C1q and systemic lupus erythematosus. Immunobiology199, 265–285 (1998). ArticleCASPubMed Google Scholar
Racila, D. M. et al. Homozygous single nucleotide polymorphism of the complement C1QA gene is associated with decreased levels of C1q in patients with subacute cutaneous lupus erythematosus. Lupus12, 124–132 (2003). ArticleCASPubMed Google Scholar
Yamada, M. et al. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells. Eur. J. Immunol.34, 221–230 (2004). ArticleCASPubMed Google Scholar
Lood, C. et al. C1q inhibits immune complex-induced interferon-alpha production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis. Arthritis Rheum.60, 3081–3090 (2009). ArticleCASPubMed Google Scholar
Kollewe, C. et al. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adaptor in interleukin-1 signaling. J. Biol. Chem.279, 5227–5236 (2004). ArticleCASPubMed Google Scholar
Jacob, C. O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA106, 6256–6261 (2009). ArticlePubMed Google Scholar
Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell134, 587–598 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3'–5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet.39, 1065–1067 (2007). ArticleCASPubMed Google Scholar
Ramantani, G. et al. Expanding the phenotypic spectrum of lupus erythematosus in Aicardi–Goutières syndrome. Arthritis Rheum.62, 1469–1477 (2010). ArticleCASPubMed Google Scholar
Ito, T. et al. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc. Natl Acad. Sci. USA103, 13138–13143 (2006). ArticleCASPubMed Google Scholar
Stüber, E., Neurath, M., Calderhead, D., Fell, H. P. & Strober, W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity2, 507–521 (1995). ArticlePubMed Google Scholar
Cunninghame Graham, D. S. et al. Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat. Genet.40, 83–89 (2008). ArticleCASPubMed Google Scholar
Delgado-Vega, A. M. et al. Replication of the TNFSF4 (OX40L) promoter region association with systemic lupus erythematosus. Genes Immun.10, 248–253 (2009). ArticleCASPubMed Google Scholar
Hagiwara, E., Gourley, M. F., Lee, S. & Klinman, D. K. Disease severity in patients with systemic lupus erythematosus correlates with an increased ratio of interleukin-10: interferon-γ-secreting cells in the peripheral blood. Arthritis Rheum.39, 379–385 (1996). ArticleCASPubMed Google Scholar
Eskdale, J. et al. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc. Natl Acad. Sci. USA95, 9465–9470 (1998). ArticleCASPubMed Google Scholar
Eskdale, J., Wordsworth, P., Bowman, S., Field, M. & Gallagher, G. Association between polymorphisms at the human IL-10 locus and systemic lupus erythematosus. Tissue Antigens49, 635–639 (1997). ArticleCASPubMed Google Scholar
Mehrian, R. et al. Synergistic effect between IL-10 and bcl-2 genotypes in determining susceptibility to SLE. Arthritis Rheum.41, 596–602 (1998). ArticleCASPubMed Google Scholar
Chong, W. P. et al. Association of interleukin-10 promoter polymorphisms with systemic lupus erythematosus. Genes Immun.5, 484–492 (2004). ArticleCASPubMed Google Scholar
Bengtsson, A. A. et al. Activation of type I interferon system in systemic lupus erythematosus correlates with disease activity but not with antiretroviral antibodies. Lupus9, 664–671 (2000). ArticleCASPubMed Google Scholar
Okamoto, T. NFκB and rheumatic diseases. Endocr. Metab. Immune Disord. Drug Targets6, 359–372 (2006). ArticleCASPubMed Google Scholar
Beyaert, R., Heyninck, K. & Van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem. Pharmacol.60, 1143–1151 (2000). ArticleCASPubMed Google Scholar
Shimane, K. et al. The association of a nonsynonymous single-nucleotide polymorphism in TNFAIP3 with systemic lupus erythematosus and rheumatoid arthritis in the Japanese population. Arthritis Rheum.62, 574–579 (2010). ArticleCASPubMed Google Scholar
Salloum, R. et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum.62, 553–561 (2010). ArticleCASPubMedPubMed Central Google Scholar
Reth, M. & Wienands, J. Initiation and processing of signals from the B cell antigen receptor. Annu. Rev. Immunol.15, 453–479 (1997). ArticleCASPubMed Google Scholar
Zhang, Z. et al. The association of the BLK gene with SLE was replicated in Chinese Han. Arch. Dermatol. Res.302, 619–624 (2010). ArticleCASPubMed Google Scholar
Ito, I. et al. Replication of the association between the C8orf13-BLK region and systemic lupus erythematosus in a Japanese population. Arthritis Rheum.60, 553–558 (2009). ArticleCASPubMed Google Scholar
Yokoyama, K. et al. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor. EMBO J.21, 83–92 (2002). ArticleCASPubMedPubMed Central Google Scholar
Maier, H., Colbert, J., Fitzsimmons, D., Clark, D. R. & Hagman, J. Activation of the early B-cell-specific mb-1 (Ig-α) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol. Cell. Biol.23, 1946–1960 (2003). ArticleCASPubMedPubMed Central Google Scholar
Moisan, J., Grenningloh, R., Bettelli, E., Oukka, M. & Ho, I. C. Ets-1 is a negative regulator of TH17 differentiation. J. Exp. Med.204, 2825–2835 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wang, D. et al. Ets-1 deficiency leads to altered B cell differentiation, hyperresponsiveness to TLR9 and autoimmune disease. Int. Immunol.17, 1179–1191 (2005). ArticleCASPubMed Google Scholar
Wojcik, H., Griffiths, E., Staggs, S., Hagman, J. & Winandy, S. Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis. Eur. J. Immunol.37, 1022–1032 (2007). ArticleCASPubMed Google Scholar
Luo, B. H., Carman, C. V. & Springer, T. A. Structural basis of integrin regulation and signaling. Annu. Rev. Immunol.25, 619–647 (2007). ArticleCASPubMedPubMed Central Google Scholar
Han, S. et al. Evaluation of imputation-based association in and around the integrin-αM (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE). Hum. Mol. Genet.18, 1171–1180 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yang, W. et al. ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum. Mol. Genet.18, 2063–2070 (2009). ArticleCASPubMedPubMed Central Google Scholar