Disturbed mitochondrial dynamics and neurodegenerative disorders (original) (raw)
Chan, D. C. Mitochondria: dynamic organelles in disease, aging, and development. Cell125, 1241–1252 (2006). ArticleCASPubMed Google Scholar
Yu-Wai-Man, P., Griffiths, P. G., Hudson, G. & Chinnery, P. F. Inherited mitochondrial optic neuropathies. J. Med. Genet.46, 145–158 (2009). ArticleCASPubMed Google Scholar
Reilly, M. M., Shy, M. E., Muntoni, F. & Pareyson, D. 168th ENMC International Workshop: outcome measures and clinical trials in Charcot–Marie–Tooth disease (CMT). Neuromuscul. Disord.20, 839–846 (2010). ArticleCASPubMed Google Scholar
Yu-Wai-Man, P., Lenaers, G. & Chinnery, P. F. in Mitochondrial Disorders Caused by Nuclear Genes (ed. Wong, L.-J.C.) 141–161 (Springer, 2013). Book Google Scholar
Belenguer, P. & Pellegrini, L. The dynamin GTPase OPA1: more than mitochondria? Biochim. Biophys. Acta1833, 176–183 (2013). ArticleCASPubMed Google Scholar
Chen, H. C. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol.160, 189–200 (2003). ArticleCASPubMedPubMed Central Google Scholar
Eura, Y., Ishihara, N., Yokota, S. & Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem.134, 333–344 (2003). ArticleCASPubMed Google Scholar
Lenaers, G. et al. OPA1 functions in mitochondria and dysfunctions in optic nerve. Int. J. Biochem. Cell Biol.41, 1866–1874 (2009). ArticleCASPubMed Google Scholar
Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell126, 177–189 (2006). ArticleCASPubMed Google Scholar
Amati-Bonneau, P. et al. OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Ann. Neurol.58, 958–963 (2005). ArticleCASPubMed Google Scholar
Zanna, C. et al. OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain131, 352–367 (2008). ArticlePubMed Google Scholar
Loson, O. C., Song, Z., Chen, H. & Chan, D. C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell24, 659–667 (2013). ArticleCASPubMedPubMed Central Google Scholar
Otera, H. et al. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol.191, 1141–1158 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rostovtseva, T. K. et al. Bax activates endophilin B1 oligomerization and lipid membrane vesiculation. J. Biol. Chem.284, 34390–34399 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tondera, D. et al. The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci.118, 3049–3059 (2005). ArticleCASPubMed Google Scholar
Takahashi, Y., Meyerkord, C. L. & Wang, H. G. Bif-1/endophilin B1: a candidate for crescent driving force in autophagy. Cell Death Differ.16, 947–955 (2009). ArticleCASPubMed Google Scholar
Olichon, A. et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett.523, 171–176 (2002). ArticleCASPubMed Google Scholar
Olichon, A. et al. OPA1 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a vertebrate restricted function in apoptosis. Cell Death Differ.14, 682–692 (2007). ArticleCASPubMed Google Scholar
Duvezin-Caubet, S. et al. OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol. Biol. Cell18, 3582–3590 (2007). ArticleCASPubMedPubMed Central Google Scholar
Martinelli, P. & Rugarli, E. I. Emerging roles of mitochondrial proteases in neurodegeneration. Biochim. Biophys. Acta1797, 1–10 (2010). ArticleCASPubMed Google Scholar
Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J.25, 2966–2977 (2006). CASPubMedPubMed Central Google Scholar
Griparic, L., Kanazawa, T. & van der Bliek, A. M. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol.178, 757–764 (2007). ArticleCASPubMedPubMed Central Google Scholar
Song, Z., Chen, H., Fiket, M., Alexander, C. & Chan, D. C. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol.178, 749–755 (2007). ArticleCASPubMedPubMed Central Google Scholar
McQuibban, G. A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature423, 537–541 (2003). ArticleCASPubMed Google Scholar
Cipolat, S. et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell126, 163–175 (2006). ArticleCASPubMed Google Scholar
Ehses, S. et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol.187, 1023–1036 (2009). ArticleCASPubMedPubMed Central Google Scholar
Head, B., Griparic, L., Amiri, M., Gandre-Babbe, S. & van der Bliek, A. M. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol.187, 959–966 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mishra, P., Carelli, V., Manfredi, G. & Chan, D. C. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab.19, 630–641 (2014). ArticleCASPubMedPubMed Central Google Scholar
Pich, S. et al. The Charcot–Marie–Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum. Mol. Genet.14, 1405–1415 (2005). ArticleCASPubMed Google Scholar
Agier, V. et al. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim. Biophys. Acta1822, 1570–1580 (2012). ArticleCASPubMed Google Scholar
Chevrollier, A. et al. Hereditary optic neuropathies share a common mitochondrial coupling defect. Ann. Neurol.63, 794–798 (2008). ArticlePubMed Google Scholar
Cogliati, S. et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell155, 160–171 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lodi, R. et al. Deficit of in vivo mitochondrial ATP production in _OPA1_-related dominant optic atrophy. Ann. Neurol.56, 719–723 (2004). ArticleCASPubMed Google Scholar
Lodi, R. et al. Defective mitochondrial adenosine triphosphate production in skeletal muscle from patients with dominant optic atrophy due to OPA1 mutations. Arch. Neurol.68, 67–73 (2011). ArticlePubMed Google Scholar
Yu-Wai-Man, P., Trenell, M. I., Hollingsworth, K. G., Griffiths, P. G. & Chinnery, P. F. OPA1 mutations impair mitochondrial function in both pure and complicated dominant optic atrophy. Brain134, e164 (2011). ArticlePubMed Google Scholar
Del Bo, R. et al. Mutated mitofusin 2 presents with intrafamilial variability and brain mitochondrial dysfunction. Neurology71, 1959–1966 (2008). ArticleCASPubMed Google Scholar
de Brito, O. M. & Scorrano, L. An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J.29, 2715–2723 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Merkwirth, C. & Langer, T. Mitofusin 2 builds a bridge between ER and mitochondria. Cell135, 1165–1167 (2008). ArticleCASPubMed Google Scholar
Lam, A. K. M. & Galione, A. The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochim. Biophys. Acta1833, 2542–2559 (2013). ArticleCASPubMed Google Scholar
Patron, M. et al. MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity. Mol. Cell53, 726–737 (2014). ArticleCASPubMedPubMed Central Google Scholar
Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature476, 341–345 (2011). ArticleCASPubMedPubMed Central Google Scholar
Csordas, G. et al. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab.17, 976–987 (2013). ArticleCASPubMedPubMed Central Google Scholar
Logan, C. V. et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet.46, 188–193 (2014). ArticleCASPubMed Google Scholar
Dayanithi, G. et al. Characterization of Ca2+ signalling in postnatal mouse retinal ganglion cells: involvement of OPA1 in Ca2+ clearance. Ophthalmic Genet.31, 53–65 (2010). ArticleCASPubMed Google Scholar
Kushnareva, Y. E. et al. Loss of OPA1 disturbs cellular calcium homeostasis and sensitizes for excitotoxicity. Cell Death Differ.20, 353–365 (2013). ArticleCASPubMed Google Scholar
Singaravelu, K. et al. Mitofusin 2 regulates STIM1 migration from the Ca2+ store to the plasma membrane in cells with depolarized mitochondria. J. Biol. Chem.286, 12189–12201 (2011). ArticleCASPubMedPubMed Central Google Scholar
de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature456, 605–611 (2008). ArticlePubMedCAS Google Scholar
Levine, B., Sinha, S. & Kroemer, G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy4, 600–606 (2008). ArticleCASPubMed Google Scholar
Walensky, L. D. & Gavathiotis, E. BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem. Sci.36, 642–652 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ekert, P. G. & Vaux, D. L. The mitochondrial death squad: hardened killers or innocent bystanders? Curr. Opin. Cell Biol.17, 626–630 (2005). ArticleCASPubMed Google Scholar
Scorrano, L. et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell2, 55–67 (2002). ArticleCASPubMed Google Scholar
Olichon, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem.278, 7743–7746 (2003). ArticleCASPubMed Google Scholar
Arnoult, D., Grodet, A., Lee, Y. J., Estaquier, J. & Blackstone, C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem.280, 35742–35750 (2005). ArticleCASPubMed Google Scholar
Karbowski, M., Norris, K. L., Cleland, M. M., Jeong, S.-Y. & Youle, R. J. Role of Bax and Bak in mitochondrial morphogenesis. Nature443, 658–662 (2006). ArticleCASPubMed Google Scholar
Neuspiel, M., Zunino, R., Gangaraju, S., Rippstein, P. & McBride, H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J. Biol. Chem.280, 25060–25070 (2005). ArticleCASPubMed Google Scholar
Chinnery, P. F., Samuels, D. C., Elson, J. & Turnbull, D. M. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet360, 1323–1325 (2002). ArticleCASPubMed Google Scholar
Twig, G., Hyde, B. & Shirihai, O. S. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim. Biophys. Acta1777, 1092–1097 (2008). ArticleCASPubMed Google Scholar
Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J.27, 433–446 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet.19, 4861–4870 (2010). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol.189, 211–221 (2010). ArticleCASPubMedPubMed Central Google Scholar
Narendra, D., Tanaka, A., Suen, D.-F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol.183, 795–803 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pallanck, L. Mitophagy: mitofusin recruits a mitochondrial killer. Curr. Biol.23, R570–R572 (2013). ArticleCASPubMed Google Scholar
Chen, Y. & Dorn, G. W. 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science340, 471–475 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kane, L. A. & Youle, R. J. PINK1 and Parkin flag Miro to direct mitochondrial traffic. Cell147, 721–723 (2011). ArticleCASPubMed Google Scholar
Shin, J. H. et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell144, 689–702 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mueller-Rischart, A. K. et al. The E3 ligase Parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell49, 908–921 (2013). ArticleCAS Google Scholar
Liu, S. et al. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet.8, e1002537 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell147, 893–906 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sterky, F. H., Lee, S., Wibom, R., Olson, L. & Larsson, N.G. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl Acad. Sci. USA108, 12937–12942 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yu-Wai-Man, P. et al. The prevalence and natural history of dominant optic atrophy due to OPA1 mutations. Ophthalmology117, 1538–1546 (2010). ArticlePubMed Google Scholar
Yu-Wai-Man, P. & Chinnery, P. F. Dominant optic atrophy: novel OPA1 mutations and revised prevalence estimates. Ophthalmology120, 1712–1712.e1 (2013). ArticlePubMed Google Scholar
Yu-Wai-Man, P., Bailie, M., Atawan, A., Chinnery, P. F. & Griffiths, P. G. Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye25, 597–601 (2011). ArticleCAS Google Scholar
Cohn, A. C. et al. The natural history of _OPA1_-related autosomal dominant optic atrophy. Br. J. Ophthalmol.92, 1333–1336 (2008). ArticleCASPubMed Google Scholar
Yu-Wai-Man, P. et al. Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies. Ophthalmology118, 558–563 (2011). ArticlePubMed Google Scholar
Votruba, M., Moore, A. T. & Bhattacharya, S. S. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J. Med. Genet.35, 793–800 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bailie, M., Votruba, M., Griffiths, P. G., Chinnery, P. F. & Yu-Wai-Man, P. Visual and psychological morbidity among patients with autosomal dominant optic atrophy. Acta Ophthalmol.91, e413–e414 (2013). ArticlePubMedPubMed Central Google Scholar
Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet.26, 211–215 (2000). ArticleCASPubMed Google Scholar
Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet.26, 207–210 (2000). ArticleCASPubMed Google Scholar
Ferre, M. et al. Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations. Hum. Mutat.30, E692–E705 (2009). ArticlePubMed Google Scholar
Aijaz, S., Erskine, L., Jeffery, G., Bhattacharya, S. S. & Votruba, M. Developmental expression profile of the optic atrophy gene product: OPA1 is not localized exclusively in the mammalian retinal ganglion cell layer. Invest. Ophthalmol. Vis. Sci.45, 1667–1673 (2004). ArticlePubMed Google Scholar
Bette, S., Schlaszus, H., Wissinger, B., Meyermann, R. & Mittelbronn, M. OPA1, associated with autosomal dominant optic atrophy, is widely expressed in the human brain. Acta Neuropathol.109, 393–399 (2005). ArticleCASPubMed Google Scholar
Pesch, U. E. et al. OPA1, the disease gene for autosomal dominant optic atrophy, is specifically expressed in ganglion cells and intrinsic neurons of the retina. Invest. Ophthalmol. Vis. Sci.45, 4217–4225 (2004). ArticlePubMed Google Scholar
Wang, A. G., Fann, M. J., Yu, H. Y. & Yen, M. Y. OPA1 expression in the human retina and optic nerve. Exp. Eye Res.83, 1171–1178 (2006). ArticleCASPubMed Google Scholar
Marchbank, N. J. et al. Deletion of the OPA1 gene in a dominant optic atrophy family: evidence that haploinsufficiency is the cause of disease. J. Med. Genet.39, e47 (2002). ArticleCASPubMedPubMed Central Google Scholar
Amati-Bonneau, P. et al. The association of autosomal dominant optic atrophy and moderate deafness may be due to the R445H mutation in the OPA1 gene. Am. J. Ophthalmol.136, 1170–1171 (2003). ArticleCASPubMed Google Scholar
Leruez, S. et al. Sensorineural hearing loss in OPA1-linked disorders. Brain136, e236 (2013). ArticlePubMed Google Scholar
Amati-Bonneau, P. et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy plus phenotypes. Brain131, 338–351 (2008). ArticlePubMed Google Scholar
Hudson, G. et al. Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain131, 329–337 (2008). ArticlePubMed Google Scholar
Spinazzi, M. et al. A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Hum. Mol. Genet.17, 3291–3302 (2008). ArticleCASPubMed Google Scholar
Pretegiani, E. et al. Spastic paraplegia in 'dominant optic atrophy plus' phenotype due to OPA1 mutation. Brain134, e195 (2011). ArticlePubMed Google Scholar
Marelli, C. et al. Heterozygous OPA1 mutations in Behr syndrome. Brain134, e169 (2011). ArticlePubMed Google Scholar
Liskova, P. et al. Novel OPA1 missense mutation in a family with optic atrophy and severe widespread neurological disorder. Acta Ophthalmol.91, E225–E231 (2013). ArticleCASPubMed Google Scholar
Ranieri, M. et al. Optic atrophy plus phenotype due to mutations in the OPA1 gene: two more Italian families. J. Neurol. Sci.315, 146–149 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat. Genet.36, 449–451 (2004). ArticlePubMedCAS Google Scholar
Verhoeven, K. et al. MFN2 mutation distribution and genotype/phenotype correlation in Charcot–Marie–Tooth type 2. Brain129, 2093–2102 (2006). ArticlePubMed Google Scholar
Zuchner, S. et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol.59, 276–281 (2006). ArticleCASPubMed Google Scholar
Polke, J. M. et al. Recessive axonal Charcot–Marie–Tooth disease due to compound heterozygous mitofusin 2 mutations. Neurology77, 168–173 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell130, 548–562 (2007). ArticleCASPubMed Google Scholar
Chen, H. et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell141, 280–289 (2010). ArticleCASPubMedPubMed Central Google Scholar
Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet.18, 231–236 (1998). ArticleCASPubMed Google Scholar
Holt, I. J. et al. Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion7, 311–321 (2007). ArticleCASPubMed Google Scholar
Kaufman, B. A. et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell18, 3225–3236 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hudson, G. & Chinnery, P. F. Mitochondrial DNA polymerase-γ and human disease. Hum. Mol. Genet.15, R244–R252 (2006). ArticleCASPubMed Google Scholar
McFarland, R., Taylor, R. W. & Turnbull, D. M. A neurological perspective on mitochondrial disease. Lancet Neurol.9, 829–840 (2010). ArticleCASPubMed Google Scholar
Alberio, S., Mineri, R., Tiranti, V. & Zeviani, M. Depletion of mtDNA: syndromes and genes. Mitochondrion7, 6–12 (2007). ArticleCASPubMed Google Scholar
Chinnery, P. F. & Zeviani, M. 155th ENMC workshop: polymerase gamma and disorders of mitochondrial DNA synthesis, 21–23 September 2007, Naarden, The Netherlands. Neuromuscul. Disord.18, 259–267 (2008). ArticlePubMed Google Scholar
Suomalainen, A. & Isohanni, P. Mitochondrial DNA depletion syndromes—many genes, common mechanisms. Neuromuscul. Disord.20, 429–437 (2010). ArticlePubMed Google Scholar
Del Bo, R. et al. Remarkable infidelity of polymerase γA associated with mutations in POLG1 exonuclease domain. Neurology61, 903–908 (2003). ArticleCASPubMed Google Scholar
Nishigaki, Y., Marti, R., Copeland, W. C. & Hirano, M. Site-specific somatic mitochondrial DNA point mutations in patients with thymidine phosphorylase deficiency. J. Clin. Invest.111, 1913–1921 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wanrooij, S. et al. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res.32, 3053–3064 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yu-Wai-Man, P. et al. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum. Mol. Genet.19, 3043–3052 (2010). ArticleCASPubMedPubMed Central Google Scholar
Durham, S. E., Samuels, D. C., Cree, L. M. & Chinnery, P. F. Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m.3243A→G. Am. J. Hum. Genet.81, 189–195 (2007). ArticleCASPubMedPubMed Central Google Scholar
Koopman, W. J., Distelmaier, F., Smeitink, J. A. & Willems, P. H. OXPHOS mutations and neurodegeneration. EMBO J.32, 9–29 (2013). ArticleCASPubMed Google Scholar
Taylor, R. W., Schaefer, A. M., Barron, M. J., McFarland, R. & Turnbull, D. M. The diagnosis of mitochondrial muscle disease. Neuromuscul. Disord.14, 237–245 (2004). ArticlePubMed Google Scholar
Rouzier, C. et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype. Brain135, 23–34 (2012). ArticlePubMed Google Scholar
Zeviani, M. OPA1 mutations and mitochondrial DNA damage: keeping the magic circle in shape. Brain131, 314–317 (2008). ArticlePubMed Google Scholar
Vidoni, S., Zanna, C., Rugolo, M., Sarzi, E. & Lenaers, G. Why mitochondria must fuse to maintain their genome integrity. Antioxid. Redox Signal.19, 379–388 (2013). ArticleCASPubMedPubMed Central Google Scholar
Stewart, J. D. et al. OPA1 in multiple mitochondrial DNA deletion disorders. Neurology71, 1829–1831 (2008). ArticleCASPubMed Google Scholar
Elachouri, G. et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res.21, 12–20 (2011). ArticleCASPubMedPubMed Central Google Scholar
Payne, B. A. et al. Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet.22, 384–390 (2013). ArticleCASPubMed Google Scholar
Sitarz, K. S. et al. OPA1 mutations induce mtDNA proliferation in leukocytes of patients with dominant optica atrophy. Neurology79, 1515–1517 (2012). ArticlePubMedPubMed Central Google Scholar
Iommarini, L. et al. Revisiting the issue of mitochondrial DNA content in optic mitochondriopathies. Neurology79, 1517–1519 (2012). ArticlePubMed Google Scholar
Renaldo, F. et al. MFN2, a new gene responsible for mitochondrial DNA depletion. Brain135, e223 (2012). ArticlePubMed Google Scholar
Yu-Wai-Man, P. & Chinnery, P. F. Dysfunctional mitochondrial maintenance: what breaks the circle of life? Brain135, 9–11 (2012). ArticlePubMed Google Scholar
Salinas, S., Proukakis, C., Crosby, A. & Warner, T. T. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol.7, 1127–1138 (2008). ArticleCASPubMed Google Scholar
Blackstone, C., O'Kane, C. J. & Reid, E. Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat. Rev. Neurosci.12, 31–42 (2011). ArticleCASPubMedPubMed Central Google Scholar
Timmerman, V., Clowes, V. E. & Reid, E. Overlapping molecular pathological themes link Charcot–Marie–Tooth neuropathies and hereditary spastic paraplegias. Exp. Neurol.246, 14–25 (2013). ArticleCASPubMed Google Scholar
Harding, A. E. Classification of the hereditary ataxias and paraplegias. Lancet1, 1151–1155 (1983). ArticleCASPubMed Google Scholar
Casari, G. et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell93, 973–983 (1998). ArticleCASPubMed Google Scholar
Ferreirinha, F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest.113, 231–242 (2004). ArticleCASPubMedPubMed Central Google Scholar
van Gassen, K. L. et al. Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain135, 2994–3004 (2012). ArticlePubMed Google Scholar
Greaves, L. C. et al. Mitochondrial DNA defects and selective extraocular muscle involvement in CPEO. Invest. Opthalmol. Vis. Sci.51, 3340–3346 (2010). Article Google Scholar
Pfeffer, G. et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain137, 1323–1336 (2014). ArticlePubMedPubMed Central Google Scholar
Di Bella, D. et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat. Genet.42, 313–320 (2010). ArticleCASPubMed Google Scholar
Pierson, T. M. et al. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet.7, e1002325 (2011). ArticleCASPubMedPubMed Central Google Scholar
Maltecca, F. et al. Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation. Hum. Mol. Genet.21, 3858–3870 (2012). ArticleCASPubMedPubMed Central Google Scholar
Almajan, E. R. et al. AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. J. Clin. Invest.122, 4048–4058 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kondadi, A. K. et al. Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation. EMBO J.33, 1011–1026 (2014). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, T. T. et al. Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc. Natl Acad. Sci. USA111, E3631–E3640 (2014). ArticleCASPubMedPubMed Central Google Scholar
Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron44, 595–600 (2004). ArticleCASPubMed Google Scholar
Macdonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's-disease chromosomes. Cell72, 971–983 (1993). Article Google Scholar
Engert, J. C. et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat. Genet.24, 120–125 (2000). ArticleCASPubMed Google Scholar
Costa, V. et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Mol. Med.2, 490–503 (2010). ArticleCASPubMedPubMed Central Google Scholar
Song, W. et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med.17, 377–382 (2011). ArticleCASPubMedPubMed Central Google Scholar
Girard, M. et al. Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix–Saguenay (ARSACS). Proc. Natl Acad. Sci. USA109, 1661–1666 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet.21, 1931–1944 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shirendeb, U. et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum. Mol. Genet.20, 1438–1455 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shirendeb, U. P. et al. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Hum. Mol. Genet.21, 406–420 (2012). ArticleCASPubMed Google Scholar
Manczak, M., Calkins, M. J. & Reddy, P. H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum. Mol. Genet.20, 2495–2509 (2011). ArticleCASPubMedPubMed Central Google Scholar
Manczak, M. & Reddy, P. H. Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum. Mol. Genet.21, 2538–2547 (2012). ArticleCASPubMedPubMed Central Google Scholar
Calkins, M. J., Manczak, M., Mao, P., Shirendeb, U. & Reddy, P. H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum. Mol. Genet.20, 4515–4529 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schon, E. A. & Area-Gomez, E. Mitochondria-associated ER membranes in Alzheimer disease. Mol. Cell. Neurosci.55, 26–36 (2013). ArticleCASPubMed Google Scholar
Hedskog, L. et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models. Proc. Natl Acad. Sci. USA110, 7916–7921 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bannwarth, S. et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain137, 2329–2345 (2014). ArticlePubMedPubMed Central Google Scholar
Chaussenot, A. et al. Screening of CHCHD10 in a French cohort confirms the involvement of this gene in frontotemporal dementia with amyotrophic lateral sclerosis patients. Neurobiol. Aging35, 2884.e1–2884.e4 (2014). ArticleCAS Google Scholar
Yu-Wai-Man, P., Votruba, M., Moore, A. T. & Chinnery, P. F. Treatment strategies for inherited optic neuropathies: past, present and future. Eye (Lond.)28, 527–537 (2014). ArticleCAS Google Scholar
Yu-Wai-Man, P., Griffiths, P. G. & Chinnery, P. F. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res.30, 81–114 (2011). ArticleCASPubMedPubMed Central Google Scholar
Carelli, V., La Morgia, C. & Sadun, A. A. Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. Curr. Opin. Neurol.26, 52–58 (2013). ArticleCASPubMed Google Scholar
Chen, H. & Chan, D. C. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum. Mol. Genet.18, R169–R176 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat. Chem. Biol.3, 331–338 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bove, J., Martinez-Vicente, M. & Vila, M. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. Neurosci.12, 437–452 (2011). ArticleCASPubMed Google Scholar
Harris, H. & Rubinsztein, D. C. Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol.8, 108–117 (2012). ArticleCAS Google Scholar
Man, P. Y., Turnbull, D. M. & Chinnery, P. F. Leber hereditary optic neuropathy. J. Med. Genet.39, 162–169 (2002). ArticlePubMed Central Google Scholar
Klopstock, T. et al. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain134, 2677–2686 (2011). ArticlePubMedPubMed Central Google Scholar
Carelli, V. et al. Idebenone treatment In Leber's hereditary optic neuropathy. Brain134, e188 (2011). ArticlePubMed Google Scholar
Sadun, A. A. et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch. Neurol.69, 331–338 (2012). ArticlePubMed Google Scholar
Cipolat, S., de Brito, O. M., Dal Zilio, B. & Scorrano, L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. USA101, 15927–15932 (2004). ArticleCASPubMedPubMed Central Google Scholar
MacAskill, A. F. et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron61, 541–555 (2009). ArticleCASPubMedPubMed Central Google Scholar
Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 Is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci.30, 4232–4240 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cassidy-Stone, A. et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell14, 193–204 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cereghetti, G. M., Costa, V. & Scorrano, L. Inhibition of Drp1-dependent mitochondrial fragmentation and apoptosis by a polypeptide antagonist of calcineurin. Cell Death Differ.17, 1785–1794 (2010). ArticleCASPubMed Google Scholar
Iwasawa, R., Mahul-Mellier, A.-L., Datler, C., Pazarentzos, E. & Grimm, S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J.30, 556–568 (2011). ArticleCASPubMed Google Scholar
Wells, T. et al. Opa3, a novel regulator of mitochondrial function, controls thermogenesis and abdominal fat mass in a mouse model for Costeff syndrome. Hum. Mol. Genet.21, 4836–4844 (2012). ArticleCASPubMed Google Scholar
Huizing, M. et al. OPA3, mutated in 3-methylglutaconic aciduria type III, encodes two transcripts targeted primarily to mitochondria. Mol. Genet. Metab.100, 149–154 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ryu, S.-W., Jeong, H. J., Choi, M., Karbowski, M. & Choi, C. Optic atrophy 3 as a protein of the mitochondrial outer membrane induces mitochondrial fragmentation. Cell. Mol. Life Sci.67, 2839–2850 (2010). ArticleCASPubMed Google Scholar
Niemann, A., Ruegg, M., La Padula, V., Schenone, A. & Suter, U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot–Marie–Tooth disease. J. Cell Biol.170, 1067–1078 (2005). ArticleCASPubMedPubMed Central Google Scholar
Niemann, A., Wagner, K. M., Ruegg, M. & Suter, U. GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol. Dis.36, 509–520 (2009). ArticleCASPubMed Google Scholar
Claramunt, R. et al. Genetics of Charcot–Marie–Tooth disease type 4A: mutations, inheritance, phenotypic variability, and founder effect. J. Med. Genet.42, 358–365 (2005). ArticleCASPubMedPubMed Central Google Scholar
Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J.Med.356, 1736–1741 (2007). ArticleCASPubMed Google Scholar
Chang, C.-R. et al. A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J. Biol. Chem.285, 32494–32503 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baxter, R. V. et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat. Genet.30, 21–22 (2002). ArticleCASPubMed Google Scholar
Anikster, Y., Kleta, R., Shaag, A., Gahl, W. A. & Elpeleg, O. Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews. Am. J. Hum. Genet.69, 1218–1224 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yarosh, W. et al. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment. PLoS Genet.4, e6 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Tang, S., Le, P. K., Tse, S., Wallace, D. C. & Huang, T. Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. PLoS ONE4, e4492 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Shahrestani, P. et al. Heterozygous mutation of Drosophila Opa1 causes the development of multiple organ abnormalities in an age-dependent and organ-specific manner. PLoS ONE4, e6867 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Rahn, J. J., Stackley, K. D. & Chan, S. S. Opa1 is required for proper mitochondrial metabolism in early development. PLoS ONE8, e59218 (2013). ArticleCASPubMedPubMed Central Google Scholar
Davies, V. J. et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum. Mol. Genet.16, 1307–1318 (2007). ArticleCASPubMed Google Scholar
Alavi, M. V. et al. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain130, 1029–1042 (2007). ArticlePubMed Google Scholar
Alavi, M. V. et al. Subtle neurological and metabolic abnormalities in an Opa1 mouse model of autosomal dominant optic atrophy. Exp. Neurol.220, 404–409 (2009). ArticleCASPubMed Google Scholar
Moore, B. A., Aviles, G. D., Larkins, C. E., Hillman, M. J. & Caspary, T. Mitochondrial retention of Opa1 is required for mouse embryogenesis. Mamm. Gen.21, 350–360 (2010). ArticleCAS Google Scholar
Sarzi, E. et al. The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse. Brain135, 3599–3613 (2012). ArticlePubMed Google Scholar
Williams, P. A., Morgan, J. E. & Votruba, M. Opa1 deficiency in a mouse model of dominant optic atrophy leads to retinal ganglion cell dendropathy. Brain133, 2942–2951 (2010). ArticlePubMed Google Scholar
Williams, P. A. et al. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain135, 493–505 (2012). ArticlePubMed Google Scholar
Yu-Wai-Man, P. et al. Secondary mtDNA defects do not cause optic nerve dysfunction in a mouse model of dominant optic atropy. Invest. Opthalmol. Vis. Sci.50, 4561–4566 (2009). Article Google Scholar
Chen, Y. et al. Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca2+ crosstalk. Circ. Res.111, 863–875 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dorn, G. W. 2nd et al. MARF and Opa1 control mitochondrial and cardiac function in Drosophila. Circ. Res.108, 12–17 (2011). ArticleCASPubMed Google Scholar
Eschenbacher, W. H. et al. Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in Drosophila. PLoS ONE7, e44296 (2012). ArticleCASPubMedPubMed Central Google Scholar
Deng, H., Dodson, M. W., Huang, H. & Guo, M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA105, 14503–14508 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chapman, A. L., Bennett, E. J., Ramesh, T. M., De Vos, K. J. & Grierson, A. J. Axonal transport defects in a mitofusin 2 loss of function model of Charcot–Marie–Tooth disease in zebrafish. PLoS ONE8, e67276 (2013). ArticleCASPubMedPubMed Central Google Scholar
Vettori, A. et al. Developmental defects and neuromuscular alterations due to mitofusin 2 gene (MFN2) silencing in zebrafish: a new model for Charcot–Marie–Tooth type 2A neuropathy. Neuromuscul. Disord.21, 58–67 (2011). ArticlePubMed Google Scholar
Chen, L. et al. OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J. Am. Heart Assoc.1, e003012 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Lee, S. et al. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum. Mol. Genet.21, 4827–4835 (2012). ArticleCASPubMed Google Scholar
Pham, A. H., Meng, S., Chu, Q. N. & Chan, D. C. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum. Mol. Genet.21, 4817–4826 (2012). ArticleCASPubMedPubMed Central Google Scholar
Detmer, S. A., Velde, C. V., Cleveland, D. W. & Chan, D. C. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot–Marie–Tooth type 2A. Hum. Mol. Genet.17, 367–375 (2008). ArticleCASPubMed Google Scholar
Cartoni, R. et al. Expression of mitofusin 2(R94Q) in a transgenic mouse leads to Charcot–Marie–Tooth neuropathy type 2A. Brain133, 1460–1469 (2010). ArticlePubMed Google Scholar
Guillet, V. et al. Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation. FASEB J.25, 1618–1627 (2011). ArticleCASPubMed Google Scholar