Hertwig, P. Sechs neue mutationen bei der hausmaus in ihrer bedeutung für allgemeine vererbungsfragen. Z. Menschl. Vererb. Konstitutionsl.26, 1–21 (1942). Google Scholar
Grüneberg, H. A new sub-lethal colour mutation in the house mouse. Proc. R. Soc. Lond. B118, 321–342 (1935). Article Google Scholar
Dickie, M. Private communication. Mouse News Letter36, 39 (1967). Google Scholar
Walker, D. G. Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science190, 784–785 (1975). ArticleCASPubMed Google Scholar
Walker, D. G. Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J. Exp. Med.142, 651–663 (1975). ArticleCASPubMed Google Scholar
Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature345, 442–444 (1990). ArticleCASPubMed Google Scholar
Marks, S. C. Jr & Lane, P. W. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J. Hered.67, 11–18 (1976). ArticlePubMed Google Scholar
Wiktor-Jedrzejczak, W. W., Ahmed, A., Szczylik, C. & Skelly, R. R. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J. Exp. Med.156, 1516–1527 (1982). ArticleCASPubMed Google Scholar
Arai, F. et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor κB (RANK) receptors. J. Exp. Med.190, 1741–1754 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zhang, D. E., Hetherington, C. J., Chen, H. M. & Tenen, D. G. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol. Cell Biol.14, 373–381 (1994). ArticleCASPubMedPubMed Central Google Scholar
Pahl, H. L. et al. The proto-oncogene PU.1 regulates expression of the myeloid-specific CD11b promoter. J. Biol. Chem.268, 5014–5020 (1993). CASPubMed Google Scholar
Tondravi, M. M. et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature386, 81–84 (1997). ArticleCASPubMed Google Scholar
Hodgkinson, C. A. et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell74, 395–404 (1993). ArticleCASPubMed Google Scholar
Luchin, A. et al. The microphthalmia transcription factor regulates expression of the tartrate-resistant acid phosphatase gene during terminal differentiation of osteoclasts. J. Bone Miner. Res.15, 451–460 (2000). ArticleCASPubMed Google Scholar
Luchin, A. et al. Genetic and physical interactions between microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J. Biol. Chem.276, 36703–36710 (2001). ArticleCASPubMed Google Scholar
Rehli, M., Lichanska, A., Cassady, A. I., Ostrowski, M. C. & Hume, D. A. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J. Immunol.162, 1559–1565 (1999). CASPubMed Google Scholar
Grigoriadis, A. E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science266, 443–448 (1994). ArticleCASPubMed Google Scholar
Matsumoto, M., Sudo, T., Marumaya, M., Osada, H. & Tsujimoto, M. Activation of p38 mitogen-activated protein kinase is crucial in osteoclastogenesis induced by tumor necrosis factor. FEBS Lett.486, 23–28 (2000). ArticleCASPubMed Google Scholar
Simonet, W. S. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell89, 309–319 (1997). ArticleCASPubMed Google Scholar
Yasuda, H. et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA95, 3597–3602 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lacey, D. L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell93, 165–176 (1998). ArticleCASPubMed Google Scholar
Wong, B. R. et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem.272, 25190–25194 (1997). ArticleCASPubMed Google Scholar
Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature390, 175–179 (1997). ArticleCASPubMed Google Scholar
Hsu, H. et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl Acad. Sci. USA96, 3540–3545 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bucay, N. et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev.12, 1260–1268 (1998). ArticleCASPubMedPubMed Central Google Scholar
Li, J. et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad. Sci. USA97, 1566–1571 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kong, Y. Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature397, 315–323 (1999). ArticleCASPubMed Google Scholar
Rothe, M., Sarma, V., Dixit, V. M. & Goeddel, D. V. TRAF2-mediated activation of NF-κ B by TNF receptor 2 and CD40. Science269, 1424–1427 (1995). ArticleCASPubMed Google Scholar
Song, H. Y., Régnier, C. H., Kirschning, C. J., Goeddel, D. V. & Rothe, M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-κB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl Acad. Sci. USA94, 9792–9796 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nakano, H. et al. TRAF5, an activator of NF-κB and putative signal transducer for the lymphotoxin-β receptor. J. Biol. Chem.271, 14661–14664 (1996). ArticleCASPubMed Google Scholar
Ishida, T. et al. Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J. Biol. Chem.271, 28745–28748 (1996). ArticleCASPubMed Google Scholar
Yeh, W. C. et al. Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity7, 715–725 (1997). ArticleCASPubMed Google Scholar
Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells4, 353–362 (1999). ArticleCASPubMed Google Scholar
Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev.13, 1015–1024 (1999). ArticleCASPubMedPubMed Central Google Scholar
Armstrong, A. P. et al. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem.277, 44347–44356 (2002). ArticleCASPubMed Google Scholar
Gerondakis, S. et al. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene25, 6781–6799 (2006). ArticleCASPubMed Google Scholar
Iotsova, V. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nat. Med.3, 1285–1289 (1997). ArticleCASPubMed Google Scholar
Xing, L. et al. NF-κB p50 and p52 expression is not required for RANK-expressing osteoclast progenitor formation but is essential for RANK- and cytokine-mediated osteoclastogenesis. J. Bone Miner. Res.17, 1200–1210 (2002). ArticleCASPubMed Google Scholar
Takeda, K. et al. Limb and skin abnormalities in mice lacking IKKα. Science284, 313–316 (1999). ArticleCASPubMed Google Scholar
Sil, A. K., Maeda, S., Sano, Y., Roop, D. R. & Karin, M. IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature428, 660–664 (2004). ArticleCASPubMed Google Scholar
Ruocco, M. G. et al. I{κ}B kinase (IKK){β}, but not IKK{α}, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J. Exp. Med.201, 1677–1687 (2005). ArticleCASPubMedPubMed Central Google Scholar
Edwards, J. R. et al. IκBα-deficient mice display increased osteoclast formation and activity and bone loss in vivo [abstract 1147]. J. Bone Miner. Res.22 (Suppl. 1), S42 (2007). Google Scholar
Takayanagi, H. et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell3, 889–901 (2002). ArticleCASPubMed Google Scholar
Ranger, A. M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature392, 186–190 (1998). ArticleCASPubMed Google Scholar
de la Pompa, J. L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature392, 182–186 (1998). ArticleCASPubMed Google Scholar
Winslow, M. M. et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell10, 771–782 (2006). ArticleCASPubMed Google Scholar
Negishi-Koga, T. & Takayanagi, H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol. Rev.231, 241–256 (2009). ArticleCASPubMed Google Scholar
Koga, T. et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature428, 758–763 (2004). ArticleCASPubMed Google Scholar
Shinohara, M. et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell132, 794–806 (2008). ArticleCASPubMed Google Scholar
Li, Y. et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood109, 3839–3848 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature402, 304–309 (1999). ArticleCASPubMed Google Scholar
Roggia, C. et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl Acad. Sci. USA98, 13960–13965 (2001). ArticleCASPubMedPubMed Central Google Scholar
Aubin, J. E. Osteoclast adhesion and resorption: the role of podosomes. J. Bone Miner. Res.7, 365–368 (1992). ArticleCASPubMed Google Scholar
McHugh, K. P. et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest.105, 433–440 (2000). ArticleCASPubMedPubMed Central Google Scholar
Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell64, 693–702 (1991). ArticleCASPubMed Google Scholar
Supanchart, C. & Kornak, U. Ion channels and transporters in osteoclasts. Arch. Biochem. Biophys.473, 161–165 (2008). ArticleCASPubMed Google Scholar
Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. _Atp6i_-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat. Genet.23, 447–451 (1999). ArticleCASPubMed Google Scholar
Scimeca, J. C. et al. The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone26, 207–213 (2000). ArticleCASPubMed Google Scholar
Kornak, U. et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum. Mol. Genet.9, 2059–2063 (2000). ArticleCASPubMed Google Scholar
Michigami, T. et al. Novel mutations in the a3 subunit of vacuolar H(+)-adenosine triphosphatase in a Japanese patient with infantile malignant osteopetrosis. Bone30, 436–439 (2002). ArticleCASPubMed Google Scholar
Lee, S. H. et al. v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med.12, 1403–1409 (2006). ArticleCASPubMed Google Scholar
Boyce, B. F., Yoneda, T., Lowe, C., Soriano, P. & Mundy, G. R. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J. Clin. Invest.90, 1622–1627 (1992). ArticleCASPubMedPubMed Central Google Scholar
Teitelbaum, S. L. & Ross, F. P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet.4, 638–649 (2003). ArticleCASPubMed Google Scholar
Sly, W. S. & Hu, P. Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu. Rev. Biochem.64, 375–401 (1995). ArticleCASPubMed Google Scholar
Margolis, D. S., Szivek, J. A., Lai, L. W. & Lien, Y. H. Phenotypic characteristics of bone in carbonic anhydrase II-deficient mice. Calcif. Tissue Int.82, 66–76 (2008). ArticleCASPubMed Google Scholar
Schlesinger, P. H., Blair, H. C., Teitelbaum, S. L. & Edwards, J. C. Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J. Biol. Chem.272, 18636–18643 (1997). ArticleCASPubMed Google Scholar
Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell104, 205–215 (2001). ArticleCASPubMed Google Scholar
Gelb, B. D., Shi, G. P., Chapman, H. A. & Desnick, R. J. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science273, 1236–1238 (1996). ArticleCASPubMed Google Scholar
Saftig, P. et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl Acad. Sci. USA95, 13453–13458 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gowen, M. et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J. Bone Miner. Res.14, 1654–1663 (1999). ArticleCASPubMed Google Scholar
Li, C. Y. et al. Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass. J. Bone Miner. Res.21, 865–875 (2006). ArticleCASPubMed Google Scholar
Delaissé, J. M. et al. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc. Res. Tech.61, 504–513 (2003). ArticlePubMedCAS Google Scholar
Vu, T. H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell93, 411–422 (1998). ArticleCASPubMedPubMed Central Google Scholar
Inada, M. et al. Critical roles for collagenase-3 (MMP13) in development of growth plate cartilage and in endochondral ossification. Proc. Natl Acad. Sci. USA101, 17192–17197 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stickens, D. et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development131, 5883–5895 (2004). ArticleCASPubMed Google Scholar
Kosaki, N. et al. Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice. Biochem. Biophys. Res. Commun.354, 846–851 (2007). ArticleCASPubMed Google Scholar
Hollberg, K., Hultenby, K., Hayman, A., Cox, T. & Andersson, G. Osteoclasts from mice deficient in tartrate-resistant acid phosphatase have altered ruffled borders and disturbed intracellular vesicular transport. Exp. Cell Res.279, 227–238 (2002). ArticleCASPubMed Google Scholar
Watts, N. B. & Diab, D. L. Long-term use of bisphosphonates in osteoporosis. J. Clin. Endocrinol. Metab.95, 1555–1565 (2010). ArticleCASPubMed Google Scholar
Bekker, P. J. et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res.19, 1059–1066 (2004). ArticleCASPubMed Google Scholar
McClung, M. R. et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med.354, 821–831 (2006). ArticleCASPubMed Google Scholar
Bone, H. G. et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J. Bone Miner. Res.25, 937–947 (2010). PubMed Google Scholar
Stoch, S. A. et al. Effect of the cathepsin K inhibitor odanacatib on bone resorption biomarkers in healthy postmenopausal women: two double-blind, randomized, placebo-controlled phase I studies. Clin. Pharmacol. Ther.86, 175–182 (2009). ArticleCASPubMed Google Scholar
Ohno, H. et al. A c-Fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model. Mol. Cancer Ther.5, 2634–2643 (2006). ArticleCASPubMed Google Scholar
Lark, M. W. et al. Antagonism of the osteoclast vitronectin receptor with an orally active nonpeptide inhibitor prevents cancellous bone loss in the ovariectomized rat. J. Bone Miner. Res.16, 319–327 (2001). ArticleCASPubMed Google Scholar
Murphy, M. G. et al. Effect of L-000845704, an αVβ3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J. Clin. Endocrinol. Metab.90, 2022–2028 (2005). ArticleCASPubMed Google Scholar
Lu, X. et al. A new osteopetrosis mutant mouse strain (ntl) with odontoma-like proliferations and lack of tooth roots. Eur. J. Oral Sci.117, 625–635 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tang, Y. et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med.15, 757–765 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kara, F. M. et al. Adenosine A1 receptors regulate bone resorption in mice: adenosine A1 receptor blockade or deletion increases bone density and prevents ovariectomy-induced bone loss in adenosine A1 receptor-knockout mice. Arthritis Rheum.62, 534–541 (2010). ArticleCASPubMedPubMed Central Google Scholar
Whyte, L. S. et al. The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc. Natl Acad. Sci. USA106, 16511–16516 (2009). ArticleCASPubMedPubMed Central Google Scholar
Iwasawa, M. et al. The antiapoptotic protein Bcl-xL negatively regulates the bone-resorbing activity of osteoclasts in mice. J. Clin. Invest.119, 3149–3159 (2009). CASPubMedPubMed Central Google Scholar
Martin-Millan, M. et al. The estrogen receptor-α in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol. Endocrinol.24, 323–334 (2010). ArticleCASPubMedPubMed Central Google Scholar
Imai, Y. et al. Estrogens maintain bone mass by regulating expression of genes controlling function and life span in mature osteoclasts. Ann. NY Acad. Sci.1173 (Suppl. 1), E31–E39 (2009). ArticleCASPubMed Google Scholar
Chan, A. S. et al. Id1 represses osteoclast-dependent transcription and affects bone formation and hematopoiesis. PLoS ONE4, e7955 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Edwards, J. R. et al. The aging associated gene SIRT-1 regulates osteoclast formation and bone mass in vivo [abstract 1097]. J. Bone Miner. Res.22 (Suppl. 1), S29 (2007). Google Scholar
Mizoguchi, F. et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J. Cell Biochem.109, 866–875 (2010). CASPubMed Google Scholar