Uric acid as a danger signal in gout and its comorbidities (original) (raw)
Zhu, Y., Pandya, B. J. & Choi, H. K. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum.63, 3136–3141 (2011). ArticlePubMed Google Scholar
Pillinger, M. H., Goldfarb, D. S. & Keenan, R. T. Gout and its comorbidities. Bull. NYU Hosp. Jt Dis.68, 199–203 (2010). PubMed Google Scholar
Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425, 516–521 (2003). ArticleCASPubMed Google Scholar
Ames, B. N., Cathcart, R., Schwiers, E. & Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl Acad. Sci. USA78, 6858–6862 (1981). ArticleCASPubMedPubMed Central Google Scholar
Frayha, R. A., Salti, I. S., Arnaout, A., Khatchadurian, A. & Uthman, S. M. Hereditary xanthinuria: report on three patients and short review of the literature. Nephron19, 328–332 (1977). ArticleCASPubMed Google Scholar
Liu, B. et al. Serum uric acid levels in patients with multiple sclerosis: a meta-analysis. Neurol. Res.34, 163–171 (2012). ArticleCASPubMed Google Scholar
Schwarzschild, M. A. et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch. Neurol.65, 716–723 (2008). ArticlePubMedPubMed Central Google Scholar
Alvarez-Lario, B. & Macarron-Vicente, J. Uric acid and evolution. Rheumatology (Oxford)49, 2010–2015 (2010). ArticleCAS Google Scholar
Kutzing, M. K. & Firestein, B. L. Altered uric acid levels and disease states. J. Pharmacol. Exp. Ther.324, 1–7 (2008). ArticleCASPubMed Google Scholar
Kumar, H., Kawai, T. & Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol.30, 16–34 (2011). ArticleCASPubMed Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCASPubMed Google Scholar
Greenfield, E. A., Nguyen, K. A. & Kuchroo, V. K. CD28/B7 costimulation: a review. Crit. Rev. Immunol.18, 389–418 (1998). ArticleCASPubMed Google Scholar
Rock, K. L., Hearn, A., Chen, C. J. & Shi, Y. Natural endogenous adjuvants. Springer Semin. Immunopathol.26, 231–246 (2005). ArticlePubMed Google Scholar
Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature392, 86–89 (1998). ArticleCASPubMed Google Scholar
Rovere, P. et al. Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol.161, 4467–4471 (1998). CASPubMed Google Scholar
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med.5, 1249–1255 (1999). ArticleCASPubMed Google Scholar
Shi, Y., Zheng, W. & Rock, K. L. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc. Natl Acad. Sci. USA97, 14590–14595 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kono, H., Chen, C. J., Ontiveros, F. & Rock, K. L. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J. Clin. Invest.120, 1939–1949 (2010). ArticleCASPubMedPubMed Central Google Scholar
Deapen, D. et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum.35, 311–318 (1992). ArticleCASPubMed Google Scholar
Shi, Y., Galusha, S. A. & Rock, K. L. Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J. Immunol.176, 3905–3908 (2006). ArticleCASPubMed Google Scholar
Allam, R. & Anders, H. J. The role of innate immunity in autoimmune tissue injury. Curr. Opin. Rheumatol.20, 538–544 (2008). ArticleCASPubMed Google Scholar
Like, A. A. & Rossini, A. A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science193, 415–417 (1976). ArticleCASPubMed Google Scholar
Horwitz, M. S., Ilic, A., Fine, C., Rodriguez, E. & Sarvetnick, N. Presented antigen from damaged pancreatic β cells activates autoreactive T cells in virus-mediated autoimmune diabetes. J. Clin. Invest.109, 79–87 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kurts, C., Miller, J. F., Subramaniam, R. M., Carbone, F. R. & Heath, W. R. Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction. J. Exp. Med.188, 409–414 (1998). ArticleCASPubMedPubMed Central Google Scholar
Horwitz, M. S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med.4, 781–785 (1998). ArticleCASPubMed Google Scholar
Majno, G. & Joris, I. Cells, tissues, and disease: principles of general pathology 2nd edn (Oxford University Press, New York, 2004). Google Scholar
Kono, H., Karmarkar, D., Iwakura, Y. & Rock, K. L. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. J. Immunol.184, 4470–4478 (2010). ArticleCASPubMed Google Scholar
Chen, C. J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest.116, 2262–2271 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gasse, P. et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am. J. Respir. Crit. Care Med.179, 903–913 (2009). ArticleCASPubMed Google Scholar
Eigenbrod, T., Park, J. H., Harder, J., Iwakura, Y. & Nunez, G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1α released from dying cells. J. Immunol.181, 8194–8198 (2008). ArticleCASPubMed Google Scholar
Gross, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity36, 388–400 (2012). ArticleCASPubMed Google Scholar
Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol.27, 519–550 (2009). ArticleCASPubMed Google Scholar
Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol.183, 787–791 (2009). ArticleCASPubMed Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell10, 417–426 (2002). ArticleCASPubMed Google Scholar
Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat. Genet.29, 301–305 (2001). ArticleCASPubMedPubMed Central Google Scholar
Aksentijevich, I. et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum.46, 3340–3348 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kubota, T. & Koike, R. Cryopyrin-associated periodic syndromes: background and therapeutics. Mod. Rheumatol.20, 213–221 (2010). ArticlePubMed Google Scholar
Church, L. D., Churchman, S. M., Hawkins, P. N. & McDermott, M. F. Hereditary auto-inflammatory disorders and biologics. Springer Semin. Immunopathol.27, 494–508 (2006). ArticleCASPubMed Google Scholar
Kobayashi, Y. et al. Identification of calcium-activated neutral protease as a processing enzyme of human interleukin 1α. Proc. Natl Acad. Sci. USA87, 5548–5552 (1990). ArticleCASPubMedPubMed Central Google Scholar
Afonina, I. S. et al. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α. Mol. Cell44, 265–278 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fettelschoss, A. et al. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression. Proc. Natl Acad. Sci. USA108, 18055–18060 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science267, 2000–2003 (1995). ArticleCASPubMed Google Scholar
Sutterwala, F. S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity24, 317–327 (2006). ArticleCASPubMed Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol.9, 847–856 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nuki, G. Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Curr. Rheumatol. Rep.10, 218–227 (2008). ArticleCASPubMed Google Scholar
McCarty, D. J. Urate crystals, inflammation, and colchicine. Arthritis Rheum.58 (Suppl. S2), S20–S24 (2008). ArticlePubMed Google Scholar
Eisenbarth, S. C., Colegio, O. R., O'Connor, W., Sutterwala, F. S. & Flavell, R. A. Crucial role for the NALP3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature453, 1122–1126 (2008). ArticleCASPubMedPubMed Central Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). ArticleCASPubMed Google Scholar
Cronstein, B. N. et al. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J. Clin. Invest.96, 994–1002 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol.11, 136–140 (2010). ArticleCASPubMed Google Scholar
Bauernfeind, F. et al. Inflammasomes: current understanding and open questions. Cell. Mol. Life Sci.68, 765–783 (2011). ArticleCASPubMed Google Scholar
Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature469, 221–225 (2011). ArticleCASPubMed Google Scholar
Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol.11, 897–904 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hentze, H., Lin, X. Y., Choi, M. S. & Porter, A. G. Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ.10, 956–968 (2003). ArticleCASPubMed Google Scholar
Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA106, 870–875 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gross, O. et al. Syk kinase signalling couples to the NLRP3 inflammasome for anti-fungal host defence. Nature459, 433–436 (2009). ArticleCASPubMed Google Scholar
Hoffstein, S. & Weissmann, G. Mechanisms of lysosomal enzyme release from leukocytes. IV. Interaction of monosodium urate crystals with dogfish and human leukocytes. Arthritis Rheum.18, 153–165 (1975). ArticleCASPubMed Google Scholar
Petrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ.14, 1583–1589 (2007). ArticleCASPubMed Google Scholar
Joosten, L. A. et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1β. Arthritis Rheum.60, 3651–3662 (2009). ArticleCASPubMedPubMed Central Google Scholar
Guma, M. et al. Caspase 1-independent activation of interleukin-1β in neutrophil-predominant inflammation. Arthritis Rheum.60, 3642–3650 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hazuda, D. J., Strickler, J., Kueppers, F., Simon, P. L. & Young, P. R. Processing of precursor interleukin 1β and inflammatory disease. J. Biol. Chem.265, 6318–6322 (1990). CASPubMed Google Scholar
Mizutani, H., Schechter, N., Lazarus, G., Black, R. A. & Kupper, T. S. Rapid and specific conversion of precursor interleukin 1β (IL-1β) to an active IL-1 species by human mast cell chymase. J. Exp. Med.174, 821–825 (1991). ArticleCASPubMed Google Scholar
Schonbeck, U., Mach, F. & Libby, P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J. Immunol.161, 3340–3346 (1998). CASPubMed Google Scholar
Coeshott, C. et al. Converting enzyme-independent release of tumor necrosis factor α and IL-1β from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc. Natl Acad. Sci. USA96, 6261–6266 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pham, C. T. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA96, 8627–8632 (1999). ArticleCASPubMedPubMed Central Google Scholar
McGuire, M. J., Lipsky, P. E. & Thiele, D. L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J. Biol. Chem.268, 2458–2467 (1993). CASPubMed Google Scholar
Adkison, A. M., Raptis, S. Z., Kelley, D. G. & Pham, C. T. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J. Clin. Invest.109, 363–371 (2002). ArticleCASPubMedPubMed Central Google Scholar
Liu-Bryan, R., Pritzker, K., Firestein, G. S. & Terkeltaub, R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J. Immunol.174, 5016–5023 (2005). ArticleCASPubMed Google Scholar
Joosten, L. A. et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum.62, 3237–3248 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity29, 807–818 (2008). ArticleCASPubMedPubMed Central Google Scholar
Scott, P., Ma, H., Viriyakosol, S., Terkeltaub, R. & Liu-Bryan, R. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J. Immunol.177, 6370–6378 (2006). ArticleCASPubMed Google Scholar
Popa-Nita, O., Proulx, S., Pare, G., Rollet-Labelle, E. & Naccache, P. H. Crystal-induced neutrophil activation: XI. Implication and novel roles of classical protein kinase C. J. Immunol.183, 2104–2114 (2009). ArticleCASPubMed Google Scholar
Tramontini, N., Huber, C., Liu-Bryan, R., Terkeltaub, R. A. & Kilgore, K. S. Central role of complement membrane attack complex in monosodium urate crystal-induced neutrophilic rabbit knee synovitis. Arthritis Rheum.50, 2633–2639 (2004). ArticlePubMed Google Scholar
Pouliot, M., James, M. J., McColl, S. R., Naccache, P. H. & Cleland, L. G. Monosodium urate microcrystals induce cyclooxygenase-2 in human monocytes. Blood91, 1769–1776 (1998). CASPubMed Google Scholar
Kuroda, E. et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity34, 514–526 (2011). ArticleCASPubMed Google Scholar
Krishnan, E. Inflammation, oxidative stress and lipids: the risk triad for atherosclerosis in gout. Rheumatology (Oxford)49, 1229–1238 (2010). ArticleCAS Google Scholar
Ichikawa, N., Taniguchi, A., Urano, W., Nakajima, A. & Yamanaka, H. Comorbidities in patients with gout. Nucleosides Nucleotides Nucleic Acids30, 1045–1050 (2011). ArticleCASPubMed Google Scholar
Khosla, U. M. et al. Hyperuricemia induces endothelial dysfunction. Kidney Int.67, 1739–1742 (2005). ArticlePubMed Google Scholar
Mazzali, M. et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension38, 1101–1106 (2001). ArticleCASPubMed Google Scholar
Mazzali, M. et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am. J. Physiol. Renal Physiol.282, F991–F997 (2002). ArticleCASPubMed Google Scholar
Farquharson, C. A., Butler, R., Hill, A., Belch, J. J. & Struthers, A. D. Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation106, 221–226 (2002). ArticleCASPubMed Google Scholar
Hong, Q. et al. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium51, 402–410 (2012). ArticleCASPubMed Google Scholar
Puddu, P., Puddu, G. M., Cravero, E., Vizioli, L. & Muscari, A. The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: molecular mechanisms and clinical implications. J. Cardiol.59, 235–242 (2012). ArticlePubMed Google Scholar
Zharikov, S. et al. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am. J. Physiol. Cell Physiol.295, C1183–C1190 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, T. et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am. J. Physiol. Renal Physiol.290, F625–F631 (2006). ArticleCASPubMed Google Scholar
Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med.17, 179–188 (2011). ArticleCASPubMedPubMed Central Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dalekos, G. N., Elisaf, M., Bairaktari, E., Tsolas, O. & Siamopoulos, K. C. Increased serum levels of interleukin-1β in the systemic circulation of patients with essential hypertension: additional risk factor for atherogenesis in hypertensive patients? J. Lab. Clin. Med.129, 300–308 (1997). ArticleCASPubMed Google Scholar
Dalekos, G. N., Elisaf, M. S., Papagalanis, N., Tzallas, C. & Siamopoulos, K. C. Elevated interleukin-1β in the circulation of patients with essential hypertension before any drug therapy: a pilot study. Eur. J. Clin. Invest.26, 936–939 (1996). ArticleCASPubMed Google Scholar
Peeters, A. C. et al. Pro-inflammatory cytokines in patients with essential hypertension. Eur. J. Clin. Invest.31, 31–36 (2001). ArticleCASPubMed Google Scholar
Vekic, J. et al. High serum uric acid and low-grade inflammation are associated with smaller LDL and HDL particles. Atherosclerosis203, 236–242 (2009). ArticleCASPubMed Google Scholar
Chhana, A. et al. Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout. Ann. Rheum. Dis.70, 1684–1691 (2011). ArticleCASPubMed Google Scholar
Schlesinger, N. & Thiele, R. G. The pathogenesis of bone erosions in gouty arthritis. Ann. Rheum. Dis.69, 1907–1912 (2010). ArticleCASPubMed Google Scholar
So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther.9, R28 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Schumacher, H. R. Jr. et al. Rilonacept (interleukin-1 trap) in the prevention of acute gout flares during initiation of urate-lowering therapy: results of a phase II randomized, double-blind, placebo-controlled trial. Arthritis Rheum.64, 876–884 (2012). ArticleCASPubMed Google Scholar
Schlesinger, N. et al. Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann. Rheum. Dis.70, 1264–1271 (2011). ArticleCASPubMed Google Scholar
Schlesinger, N. et al. Canakinumab relieves symptoms of acute flares and improves health-related quality of life in patients with difficult-to-treat gouty arthritis by suppressing inflammation: results of a randomized, dose-ranging study. Arthritis Res. Ther.13, R53 (2011). ArticleCASPubMedPubMed Central Google Scholar
So, A. et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum.62, 3064–3076 (2010). ArticleCASPubMed Google Scholar
York, I. A., Goldberg, A. L., Mo, X. Y. & Rock, K. L. Proteolysis and class I major histocompatibility complex antigen presentation. Immunol. Rev.172, 49–66 (1999). ArticleCASPubMed Google Scholar
Germain, R. N. & Margulies, D. H. The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol.11, 403–450 (1993). ArticleCASPubMed Google Scholar
Hoffman, H. M. et al. Role of the leucine-rich repeat domain of cryopyrin/NALP3 in monosodium urate crystal-induced inflammation in mice. Arthritis Rheum.62, 2170–2179 (2010). CASPubMedPubMed Central Google Scholar
Torres, R. et al. Hyperalgesia, synovitis and multiple biomarkers of inflammation are suppressed by interleukin 1 inhibition in a novel animal model of gouty arthritis. Ann. Rheum. Dis68, 1602–1608 (2009). ArticleCASPubMed Google Scholar
Cassel, S. L. et al. The NALP3 inflammasome is essential for the development of silicosis. Proc. Natl Acad. Sci. USA105, 9035–9040 (2008). ArticleCASPubMedPubMed Central Google Scholar
Palomaki, J. et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano5, 6861–6870 (2011). ArticleCASPubMed Google Scholar
Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE5, e11765 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Li, H., Willingham, S. B., Ting, J. P. & Re, F. Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol.181, 17–21 (2008). ArticleCASPubMed Google Scholar
Franchi, L. & Nunez, G. The NLRP3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur. J. Immunol.38, 2085–2089 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol.181, 3755–3759 (2008). ArticleCASPubMed Google Scholar
Pazar, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol.186, 2495–2502 (2011). ArticleCASPubMed Google Scholar
Narayan, S. et al. Octacalcium phosphate crystals induce inflammation in vivo through interleukin-1 but independent of the NLRP3 inflammasome in mice. Arthritis Rheum.63, 422–433 (2011). ArticleCASPubMed Google Scholar
Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl Acad. Sci. USA108, 14867–14872 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yazdi, A. S. et al. Nanoparticles activate the NLR pyrin domain containing 3 (NLRP3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl Acad. Sci. USA107, 19449–19454 (2010). ArticleCASPubMedPubMed Central Google Scholar