How dying cells alert the immune system to danger (original) (raw)
Dresser, D. W. Effectiveness of lipid and lipidophilic substances as adjuvants. Nature191, 1169–1171 (1961). ArticleCASPubMed Google Scholar
Dresser, D. W. Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology5, 378–388 (1962). CASPubMedPubMed Central Google Scholar
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54 (Pt 1), 1–13 (1989). ArticleCASPubMed Google Scholar
Takeda, K., Kaisho, T. & Akira, S. Toll-like receptors. Annu. Rev. Immunol.21, 335–376 (2003). ArticleCASPubMed Google Scholar
Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature442, 39–44 (2006). ArticleCASPubMed Google Scholar
Kawai, T. & Akira, S. Antiviral signaling through pattern recognition receptors. J. Biochem. (Tokyo)141, 137–145 (2007). ArticleCAS Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). This paper introduces the danger model and describes the hypothesis that the recognition of tissue damage is crucial for the activation of antigen-presenting cells and adaptive immune responses. ArticleCASPubMed Google Scholar
Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nature Rev. Immunol.4, 469–478 (2004). ArticleCAS Google Scholar
Rock, K. L., Hearn, A., Chen, C. J. & Shi, Y. Natural endogenous adjuvants. Springer Semin. Immunopathol.26, 231–246 (2005). ArticlePubMed Google Scholar
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med.5, 1249–1255 (1999). ArticleCASPubMed Google Scholar
Shi, Y., Zheng, W. & Rock, K. L. Cell injury releases endogenous adjuvants that stimulate cytotoxic T cell responses. Proc. Natl Acad. Sci. USA97, 14590–14595 (2000). References 10 and 11 identified the existence of endogenous molecules (danger signals) that function as adjuvants to promote acquired immunity. ArticleCASPubMedPubMed Central Google Scholar
Shi, Y. & Rock, K. L. Cell death releases endogenous adjuvants that selectively enhance immune surveillance of particulate antigens. Eur. J. Immunol.32, 155–162 (2002). ArticleCASPubMed Google Scholar
Mathis, D., Vence, L. & Benoist, C. β-cell death during progression to diabetes. Nature414, 792–798 (2001). ArticleCASPubMed Google Scholar
Turley, S., Poirot, L., Hattori, M., Benoist, C. & Mathis, D. Physiological β-cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med.198, 1527–1537 (2003). ArticleCASPubMedPubMed Central Google Scholar
Like, A. A. & Rossini, A. A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science193, 415–417 (1976). ArticleCASPubMed Google Scholar
Damico, F. M., Kiss, S. & Young, L. H. Sympathetic ophthalmia. Semin. Ophthalmol.20, 191–197 (2005). ArticlePubMed Google Scholar
Dressler, W. A post-myocardial infarction syndrome; preliminary report of a complication resembling idiopathic, recurrent, benign pericarditis. J. Am. Med. Assoc.160, 1379–1383 (1956). ArticleCASPubMed Google Scholar
Nowak, A. K. et al. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J. Immunol.170, 4905–4913 (2003). ArticleCASPubMed Google Scholar
Kouwenhoven, E. A., de Bruin, R. W., Bajema, I. M., Marquet, R. L. & Ijzermans, J. N. Cold ischemia augments allogeneic-mediated injury in rat kidney allografts. Kidney Int.59, 1142–1148 (2001). ArticleCASPubMed Google Scholar
Shi, Y., Galusha, S. A. & Rock, K. L. Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J. Immunol.176, 3905–3908 (2006). ArticleCASPubMed Google Scholar
Hu, D. E., Moore, A. M., Thomsen, L. L. & Brindle, K. M. Uric acid promotes tumor immune rejection. Cancer Res.64, 5059–5062 (2004). ArticleCASPubMed Google Scholar
Udono, H. & Srivastava, P. K. Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med.178, 1391–1396 (1993). ArticleCASPubMed Google Scholar
Feng, H., Zeng, Y., Graner, M. W., Likhacheva, A. & Katsanis, E. Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood101, 245–252 (2003). ArticleCASPubMed Google Scholar
Basu, S., Binder, R. J., Suto, R., Anderson, K. M. & Srivastava, P. K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int. Immunol.12, 1539–1546 (2000). ArticleCASPubMed Google Scholar
Binder, R. J., Anderson, K. M., Basu, S. & Srivastava, P. K. Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J. Immunol.165, 6029–6035 (2000). ArticleCASPubMed Google Scholar
Bausinger, H. et al. Endotoxin-free heat-shock protein 70 fails to induce APC activation. Eur. J. Immunol.32, 3708–3713 (2002). ArticleCASPubMed Google Scholar
Shi, Y., Evans, J. E. & Rock, K. L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425, 516–521 (2003). This paper identified uric acid as an endogenous adjuvant. ArticleCASPubMed Google Scholar
Lotze, M. T. & Tracey, K. J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Rev. Immunol.5, 331–342 (2005). ArticleCAS Google Scholar
Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature418, 191–195 (2002). This paper showed that HMGB1 is released from necrotic but not apoptotic cells and that it induces inflammatory responsesin vivo. ArticleCASPubMed Google Scholar
Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med.13, 1050–1059 (2007). This paper provides evidence that HMGB1 is an endogenous adjuvant that contributes to tumour immunity in chemotherapy- and radiotherapy-induced cell death. ArticleCASPubMed Google Scholar
Ishii, K. J. et al. Genomic DNA released by dying cells induces the maturation of APCs. J. Immunol.167, 2602–2607 (2001). ArticleCASPubMed Google Scholar
Bird, A. P., Taggart, M. H., Nicholls, R. D. & Higgs, D. R. Non-methylated CpG-rich islands at the human α-globin locus: implications for evolution of the α-globin pseudogene. EMBO J.6, 999–1004 (1987). ArticleCASPubMedPubMed Central Google Scholar
Majno, G., La Gattuta, M. & Thompson, T. E. Cellular death and necrosis: chemical, physical and morphologic changes in rat liver. Virchows Arch. Pathol. Anat. Physiol. Klin. Med.333, 421–465 (1960). This paper provides a detailed description of inflammatory responses to necrotic tissuein vivo. ArticleCASPubMed Google Scholar
Chen, C. J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nature Med.13, 851–856 (2007). This paper shows that the IL-1α–IL-1-receptor–MYD88 pathway has an important role in the acute neutrophilic inflammatory response to cell death, whereas Toll-like receptors have only a minor role in this response. ArticleCASPubMed Google Scholar
Andersson, U. et al. High mobility group 1 protein (HMG1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med.192, 565–570 (2000). ArticleCASPubMedPubMed Central Google Scholar
Orlova, V. V. et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J.26, 1129–1139 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rouhiainen, A., Tumova, S., Valmu, L., Kalkkinen, N. & Rauvala, H. Analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukocyte Biol.81, 49–58 (2007). ArticleCASPubMed Google Scholar
Fairs, J. S. & McCarthy, D. J. J. Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet280, 682–685 (1962). Article Google Scholar
Liu, F. T. & Rabinovich, G. A. Galectins as modulators of tumour progression. Nature Rev. Cancer5, 29–41 (2005). ArticleCAS Google Scholar
Nakamura, H. et al. Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. Immunol. Lett.42, 75–80 (1994). ArticleCASPubMed Google Scholar
Sano, H. et al. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J. Immunol.165, 2156–2164 (2000). ArticleCASPubMed Google Scholar
Almkvist, J. & Karlsson, A. Galectins as inflammatory mediators. Glycoconj. J.19, 575–581 (2004). Article Google Scholar
Dai, S. Y. et al. Galectin-9 induces maturation of human monocyte-derived dendritic cells. J. Immunol.175, 2974–2981 (2005). ArticleCASPubMed Google Scholar
Bertini, R. et al. Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J. Exp. Med.189, 1783–1789 (1999). ArticleCASPubMedPubMed Central Google Scholar
Schenk, H., Vogt, M., Droge, W. & Schulze-Osthoff, K. Thioredoxin as a potent costimulus of cytokine expression. J. Immunol.156, 765–771 (1996). CASPubMed Google Scholar
Panjwani, N. N., Popova, L. & Srivastava, P. K. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J. Immunol.168, 2997–3003 (2002). ArticleCASPubMed Google Scholar
Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med.6, 435–442 (2000). ArticleCASPubMed Google Scholar
Chen, W., Syldath, U., Bellmann, K., Burkart, V. & Kolb, H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J. Immunol.162, 3212–3219 (1999). CASPubMed Google Scholar
Wallin, R. P. et al. Heat-shock proteins as activators of the innate immune system. Trends Immunol.23, 130–135 (2002). ArticleCASPubMed Google Scholar
Hofmann, M. A. et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell97, 889–901 (1999). ArticleCASPubMed Google Scholar
Ryckman, C., Vandal, K., Rouleau, P., Talbot, M. & Tessier, P. A. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol.170, 3233–3242 (2003). ArticleCASPubMed Google Scholar
Hefeneider, S. H. et al. Nucleosomes and DNA bind to specific cell-surface molecules on murine cells and induce cytokine production. Clin. Immunol. Immunopathol.63, 245–251 (1992). ArticleCASPubMed Google Scholar
Decker, P., Singh-Jasuja, H., Haager, S., Kötter, I. & Rammensee, H. G. Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation. J. Immunol.174, 3326–3334 (2005). ArticleCASPubMed Google Scholar
Cronstein, B. N., Daguma, L., Nichols, D., Hutchison, A. J. & Williams, M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J. Clin. Invest.85, 1150–1157 (1990). ArticleCASPubMedPubMed Central Google Scholar
Poelstra, K., Heynen, E. R., Baller, J. F., Hardonk, M. J. & Bakker, W. W. Modulation of anti-Thy1 nephritis in the rat by adenine nucleotides. Evidence for an anti-inflammatory role for nucleotidases. Lab. Invest.66, 555–563 (1992). CASPubMed Google Scholar
Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukocyte Biol.75, 39–48 (2004). ArticlePubMedCAS Google Scholar
Yang, D. et al. LL-37, the neutrophil-granule- and epithelial-cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med.192, 1069–1074 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science286, 525–528 (1999). ArticleCASPubMed Google Scholar
Carp, H. Mitochondrial _N_-formylmethionyl proteins as chemoattractants for neutrophils. J. Exp. Med.155, 264–275 (1982). ArticleCASPubMed Google Scholar
Zhang, M. et al. Identification of the target self-antigens in reperfusion injury. J. Exp. Med.203, 141–152 (2006). This paper shows that natural IgM antibodies bind myosin released from necrotic cells in ischaemia–reperfusion injury and stimulate inflammation by activating complement. ArticleCASPubMedPubMed Central Google Scholar
Williams, J. P. et al. Intestinal reperfusion injury is mediated by IgM and complement. J. Appl. Physiol.86, 938–942 (1999). ArticleCASPubMed Google Scholar
Weiser, M. R. et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J. Exp. Med.183, 2343–2348 (1996). ArticleCASPubMed Google Scholar
Zhang, M. et al. The role of natural IgM in myocardial ischemia–reperfusion injury. J. Mol. Cell. Cardiol.41, 62–67 (2006). ArticleCASPubMed Google Scholar
Zhang, M. et al. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc. Natl Acad. Sci. USA101, 3886–3891 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hill, J. H. & Ward, P. A. The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J. Exp. Med.133, 885–900 (1971). ArticleCASPubMedPubMed Central Google Scholar
Pinckard, R. N. et al. Antibody-independent activation of human C1 after interaction with heart subcellular membranes. J. Immunol.110, 1376–1382 (1973). CASPubMed Google Scholar
Pfister, R. R., Haddox, J. L. & Sommers, C. I. Injection of chemoattractants into normal cornea: a model of inflammation after alkali injury. Invest. Ophthalmol. Vis. Sci.39, 1744–1750 (1998). CASPubMed Google Scholar
Weathington, N. M. et al. A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Med.12, 317–323 (2006). ArticleCASPubMed Google Scholar
Smiley, S. T., King, J. A. & Hancock, W. W. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J. Immunol.167, 2887–2894 (2001). ArticleCASPubMed Google Scholar
Taylor, K. R. et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem.279, 17079–17084 (2004). ArticleCASPubMed Google Scholar
Wrenshall, L. E., Cerra, F. B., Carlson, A., Bach, F. H. & Platt, J. L. Regulation of murine splenocyte responses by heparan sulfate. J. Immunol.147, 455–459 (1991). CASPubMed Google Scholar
Kaplan, A. P. et al. The intrinsic coagulation/kinin-forming cascade: assembly in plasma and cell surfaces in inflammation. Adv. Immunol.66, 225–272 (1997). ArticleCASPubMed Google Scholar
Tsan, M. F. & Gao, B. Endogenous ligands of Toll-like receptors. J. Leukocyte Biol.76, 514–519 (2004). ArticleCASPubMed Google Scholar
Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukocyte Biol.81, 1–5 (2006). ArticlePubMedCAS Google Scholar
Park, J. S. et al. Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem.279, 7370–7377 (2004). ArticleCASPubMed Google Scholar
Liu-Bryan, R., Scott, P., Sydlaske, A., Rose, D. M. & Terkeltaub, R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum.52, 2936–2946 (2005). ArticleCASPubMed Google Scholar
Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J. Immunol.164, 558–561 (2000). ArticleCASPubMed Google Scholar
Vabulas, R. M. et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem.277, 20847–20853 (2002). ArticleCASPubMed Google Scholar
Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science298, 1025–1029 (2002). ArticleCASPubMed Google Scholar
Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Med.11, 1173–1179 (2005). ArticleCASPubMed Google Scholar
Johnson, G. B., Brunn, G. J., Kodaira, Y. & Platt, J. L. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol.168, 5233–5239 (2002). ArticleCASPubMed Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). ArticleCASPubMed Google Scholar
Chen, C. J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest.116, 2262–2271 (2006). ArticleCASPubMedPubMed Central Google Scholar
Warger, T. et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J. Biol. Chem.281, 22545–22553 (2006). ArticleCASPubMed Google Scholar
Kokkola, R. et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand. J. Immunol.61, 1–9 (2005). ArticleCASPubMed Google Scholar
Dumitriu, I. E. et al. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J. Immunol.174, 7506–7515 (2005). ArticleCASPubMed Google Scholar
Basu, S., Binder, R. J., Ramalingam, T. & Srivastava, P. K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity14, 303–313 (2001). ArticleCASPubMed Google Scholar
Delneste, Y. et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity17, 353–362 (2002). ArticleCASPubMed Google Scholar
Fan, S. T. & Edgington, T. S. Integrin regulation of leukocyte inflammatory functions. CD11b/CD18 enhancement of the tumor necrosis factor-α responses of monocytes. J. Immunol.150, 2972–2980 (1993). CASPubMed Google Scholar
Kobayashi, H. & Terao, T. Hyaluronic acid-specific regulation of cytokines by human uterine fibroblasts. Am. J. Physiol.273, C1151–C1159 (1997). ArticleCASPubMed Google Scholar
Gregersen, P. K. & Behrens, T. W. Genetics of autoimmune diseases — disorders of immune homeostasis. Nature Rev. Genet.7, 917–928 (2006). ArticleCASPubMed Google Scholar
Romson, J. L. et al. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation67, 1016–1023 (1983). ArticleCASPubMed Google Scholar
Hall, T. S. et al. The role of leukocyte depletion in reducing injury to the lung after hypothermic ischemia. Curr. Surg.44, 137–139 (1987). CASPubMed Google Scholar
Sadasivan, K. K., Carden, D. L., Moore, M. B. & Korthuis, R. J. Neutrophil mediated microvascular injury in acute, experimental compartment syndrome. Clin. Orthop. Relat. Res.339, 206–215 (1997). Article Google Scholar
Liu, Z. X., Han, D., Gunawan, B. & Kaplowitz, N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology43, 1220–1230 (2006). ArticleCASPubMed Google Scholar
Ghio, A. J., Kennedy, T. P., Hatch, G. E. & Tepper, J. S. Reduction of neutrophil influx diminishes lung injury and mortality following phosgene inhalation. J. Appl. Physiol.71, 657–665 (1991). ArticleCASPubMed Google Scholar
Dovi, J. V., He, L. K. & DiPietro, L. A. Accelerated wound closure in neutrophil-depleted mice. J. Leukocyte Biol.73, 448–455 (2003). ArticleCASPubMed Google Scholar
Faouzi, S. et al. Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-κB-independent, caspase-3-dependent pathway. J. Biol. Chem.276, 49077–49082 (2001). ArticleCASPubMed Google Scholar
Huynh, M. L., Fadok, V. A. & Henson, P. M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest.109, 41–50 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ronnefarth, V. M. et al. TLR2/TLR4-independent neutrophil activation and recruitment upon endocytosis of nucleosomes reveals a new pathway of innate immunity in systemic lupus erythematosus. J. Immunol.177, 7740–7749 (2006). ArticlePubMed Google Scholar
Boule, M. W. et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin–immunoglobulin G complexes. J. Exp. Med.199, 1631–1640 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tsan, M. F. & Gao, B. Cytokine function of heat shock proteins. Am. J. Physiol. Cell. Physiol.286, C739–C744 (2004). ArticleCASPubMed Google Scholar
Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G. & Garrido, C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J. Leukocyte Biol.81, 15–27 (2007). ArticleCASPubMed Google Scholar
Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Med.4, 581–587 (1998). This paper shows that the expression of heat-shock proteins in tumour cells is increased by necrotic but not apoptotic cell death and is related to immunogenicityin vivo. ArticleCASPubMed Google Scholar
Bours, M. J., Swennen, E. L., Di Virgilio, F., Cronstein, B. N. & Dagnelie, P. C. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther.112, 358–404 (2006). ArticleCASPubMed Google Scholar
Fredholm, B. B. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ.14, 1315–1323 (2007). ArticleCASPubMed Google Scholar
Idzko, M. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nature Med.13, 913–919 (2007). ArticleCASPubMed Google Scholar
la Sala, A. et al. Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate TH1 responses. J. Immunol.166, 1611–1617 (2001). ArticleCASPubMed Google Scholar
Yang, D., Biragyn, A., Hoover, D. M., Lubkowski, J. & Oppenheim, J. J. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol.22, 181–215 (2004). ArticlePubMedCAS Google Scholar
Davidson, D. J. et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol.172, 1146–1156 (2004). ArticleCASPubMed Google Scholar
Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449, 564–569 (2007). ArticleCASPubMed Google Scholar
Lillard, J. W. Jr, Boyaka, P. N., Chertov, O., Oppenheim, J. J. & McGhee, J. R. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl Acad. Sci. USA96, 651–656 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gawlowski, D. M., Benoit, J. N. & Granger, H. J. Microvascular pressure and albumin extravasation after leukocyte activation in hamster cheek pouch. Am. J. Physiol.264, H541–H546 (1993). CASPubMed Google Scholar
Sozzani, S. et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol.155, 3292–3295 (1995). CASPubMed Google Scholar
Mummert, D. I., Takashima, A., Ellinger, L. & Mummert, M. E. Involvement of hyaluronan in epidermal Langerhans cell maturation and migration in vivo. J. Dermatol. Sci.33, 91–97 (2003). This paper shows that the interaction of hyaluronic acid with Langerhans cells contributes to the development of contact hypersensitivityin vivoby using a specific inhibitory peptide. ArticleCASPubMed Google Scholar
Scheibner, K. A. et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol.177, 1272–1281 (2006). ArticleCASPubMed Google Scholar
Termeer, C. C. et al. Oligosaccharides of hyaluronan are potent activators of dendritic cells. J. Immunol.165, 1863–1870 (2000). ArticleCASPubMed Google Scholar
Tobiasova-Czetoova, Z. et al. Effects of human plasma proteins on maturation of monocyte-derived dendritic cells. Immunol. Lett.100, 113–119 (2005). ArticleCASPubMed Google Scholar
Mahnke, K., Bhardwaj, R. S., Luger, T. A., Schwarz, T. & Grabbe, S. Interaction of murine dendritic cells with collagen up-regulates allostimulatory capacity, surface expression of heat stable antigen, and release of cytokines. J. Leukocyte Biol.60, 465–472 (1996). ArticleCASPubMed Google Scholar
Brand, U. et al. Influence of extracellular matrix proteins on the development of cultured human dendritic cells. Eur. J. Immunol.28, 1673–1680 (1998). ArticleCASPubMed Google Scholar
Houghton, A. M. et al. Elastin fragments drive disease progression in a murine model of emphysema. J. Clin. Invest.116, 753–759 (2006). ArticleCASPubMedPubMed Central Google Scholar
Adair-Kirk, T. L. et al. A site on laminin α5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J. Immunol.171, 398–406 (2003). ArticleCASPubMed Google Scholar