Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle (original) (raw)

References

  1. Peters, J., Walsh, M.J. & Franke, W.W. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J. 9, 1757–1767 (1990).
    Article CAS Google Scholar
  2. Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603–610 (1998).
    Article CAS Google Scholar
  3. Roy, L. et al. Role of p97 and syntaxin-5 in the assembly of transitional endoplasmic reticulum. Mol. Biol. Cell 11, 2529–2542 (2000).
    Article CAS Google Scholar
  4. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nature Cell Biol. 3, 1086–1091 (2001).
    Article CAS Google Scholar
  5. Shirogane, T. et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11, 709–719 (1999).
    Article CAS Google Scholar
  6. Madeo, F., Fröhlich, E. & Fröhlich, K. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734 (1997).
    Article CAS Google Scholar
  7. Madeo, F., Schlauer, J., Zischka, H., Mecke, D. & Fröhlich, K. Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of cdc48p. Mol. Biol. Cell 9, 131–141 (1998).
    Article CAS Google Scholar
  8. Yamada, T. et al. p97 ATPase, an ATPase involved in membrane fusion, interacts with DNA unwinding factor (DUF) that functions in DNA replication. FEBS Lett. 466, 287–291 (2000).
    Article CAS Google Scholar
  9. Dai, R.M., Chen, E., Longo, D.L., Gorbea, C.M. & Li, C.H. Involvement of valosin-containing protein, an ATPase co-purified with IκBα and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IκBα. J. Biol. Chem. 273, 3562–3573 (1998).
    Article CAS Google Scholar
  10. Meyer, H.H., Shorter, J.G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).
    Article CAS Google Scholar
  11. Yen, C. et al. Involvement of the ubiquitin-proteasome pathway in the degradation of nontyrosine kinase-type cytokine receptors of IL-9, IL-2, and erythropoietin. J. Immunol. 165, 6372–6380 (2000).
    Article CAS Google Scholar
  12. Dai, R.M. & Li, C.H. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nature Cell Biol. 3, 740–744 (2001).
    Article CAS Google Scholar
  13. Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).
    Article CAS Google Scholar
  14. Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitin-selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 21, 615–621 (2002).
    Article CAS Google Scholar
  15. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002).
    Article CAS Google Scholar
  16. Rabinovich, E., Kerem, A., Fröhlich, K.U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002).
    Article CAS Google Scholar
  17. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).
    Article CAS Google Scholar
  18. Meyer, H.H., Kondo, H. & Warren, G. The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS Lett. 437, 255–257 (1998).
    Article CAS Google Scholar
  19. Koegl, M.T. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).
    Article CAS Google Scholar
  20. Ghislain, M., Dohmen, R.J., Lévy, F. & Varshavsky, A. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15, 4884–4899 (1996).
    Article CAS Google Scholar
  21. Maurizi, M.R. & Li, C.H. AAA proteins: in search of a common molecular basis. International Meeting on Cellular Functions of AAA Proteins. EMBO Rep. 2, 980–985 (2001).
    Article CAS Google Scholar
  22. Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell. Biol. 8, 65–71 (1998).
    Article CAS Google Scholar
  23. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).
    CAS Google Scholar
  24. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure — diverse function. Genes Cells 6, 575–597 (2001).
    Article CAS Google Scholar
  25. Vale, R.D. AAA proteins. Lords of the ring. J. Cell Biol. 10, F13–19 (2000).
    Article Google Scholar
  26. Babor, S.M. & Fass, D. Crystal structure of the Sec18p N-terminal domain. Proc. Natl. Acad. Sci. USA 96, 14759–14764 (1999).
    Article CAS Google Scholar
  27. Coles, M. et al. The solution structure of VAT-N reveals a 'missing link' in the evolution of complex enzymes from a simple βαββ element. Curr. Biol. 9, 1158–1168 (1999).
    Article CAS Google Scholar
  28. May, A.P., Misura, K.M.S., Whiteheart, S.W. & Weis, W.I. Crystal structure of the N-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nature Cell Biol. 1, 175–182 (1999).
    Article CAS Google Scholar
  29. Yu, R.C., Jahn, R., & Brunger, A.T. NSF N-terminal domain crystal structure: models of NSF function. Mol. Cell 4, 97–107 (1999).
    Article CAS Google Scholar
  30. Zhang X., et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).
    Article CAS Google Scholar
  31. Peters, J. et al. Ubiquitous soluble Mg2+-ATPase complex. A structural study. J. Mol. Biol. 223, 557–571 (1992).
    Article CAS Google Scholar
  32. Rockel, B. et al. Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett. 451, 27–32 (1999).
    Article CAS Google Scholar
  33. Rouiller, I., Butel, V.M., Latterich, M., Milligan, R.A. & Wilson-Kubalek, E.M. A major conformational change in p97 AAA ATPase upon ATP binding. Mol. Cell 6, 1485–1490 (2000).
    Article CAS Google Scholar
  34. Rockel, B., Jakana, J., Chiu, W. & Baumeister, W. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum. J. Mol. Biol. 317, 673–681 (2002).
    Article CAS Google Scholar
  35. Lenzen, C.U., Steinmann, D., Whiteheart, S.W. & Weis, W.I. Crystal structure of the hexamerizatioN-domain of _N_-ethylmaleimide-sensitive fusion protein. Cell 94, 525–536 (1998).
    Article CAS Google Scholar
  36. Yu, R.C., Hanson, P.I., Jahn, R. & Brunger, A.T. Structure of the ATP-dependent oligomerizatioN-domain of _N_-ethylmaleimide sensitive factor complexed with ATP. Nature Struct. Biol. 5, 803–811 (1998).
    Article CAS Google Scholar
  37. Wittinghofer, A. Signaling mechanistics: aluminum fluoride for molecule of the year. Curr. Biol. 7, R682–685 (1997).
    Article CAS Google Scholar
  38. Putnam, C.D. et al. Structure and mechanism of the RuvB Holliday junction branch migration motor. J. Mol. Biol. 311, 297–310 (2001).
    Article CAS Google Scholar
  39. Sousa, M.C. et al. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103, 633–643 (2000).
    Article CAS Google Scholar
  40. Bochtler, M., Song, H.K., Hartmann, C., Ramachandran, R. & Huber, R. The quaternary arrangement of HslU and HslV in a cocrystal: a response to Wang, Yale. J. Struct. Biol. 135, 281–293 (2001).
    Article CAS Google Scholar
  41. Wang, J. A corrected quaternary arrangement of the peptidase HslV and ATPase HslU in a cocrystal structure. J. Struct. Biol. 134, 15–24 (2001).
    Article CAS Google Scholar
  42. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).
    Article CAS Google Scholar
  43. Lamb, J.R., Fu, V., Wirtz, E. & Bangs, J.D. Functional analysis of the trypanosomal AAA protein _Tb_VCP with _trans_-dominant ATP hydrolysis mutants. J. Biol. Chem. 276, 21512–21520 (2001).
    Article CAS Google Scholar
  44. Pamnani, V. et al. Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum. FEBS Lett. 404, 263–268 (1997).
    Article CAS Google Scholar
  45. Frank, J. & Radermacher, M. SPIDER and WEB: processing and visualization of images in 3D EM and related fields. J. Struct. Biol. 116, 190–199 (1996).
    Article CAS Google Scholar
  46. Sorzano, C.O.S. et al. The effect of overabundant projection directions on 3D reconstruction algorithms. J. Struct. Biol. 133, 108–118 (2001).
    Article CAS Google Scholar
  47. Wriggers, W., Milligan, R.A. & McCammon, J.A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).
    Article CAS Google Scholar
  48. Jones, T.A., Zou, J-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar

Download references