Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions (original) (raw)

References

  1. Chen, Y. et al. SPD—a web-based secreted protein database. Nucleic Acids Res. 33, D169–D173 (2005).
    Article CAS PubMed Google Scholar
  2. Hebert, D.N. & Molinari, M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377–1408 (2007).
    Article CAS PubMed Google Scholar
  3. Munro, S. & Pelham, H.R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291–300 (1986).
    Article CAS PubMed Google Scholar
  4. Karlin, S. & Brocchieri, L. Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J. Mol. Evol. 47, 565–577 (1998).
    Article CAS PubMed Google Scholar
  5. Haas, I.G. & Wabl, M. Immunoglobulin heavy chain binding protein. Nature 306, 387–389 (1983).
    Article CAS PubMed Google Scholar
  6. Weitzmann, A., Baldes, C., Dudek, J. & Zimmermann, R. The heat shock protein 70 molecular chaperone network in the pancreatic endoplasmic reticulum—a quantitative approach. FEBS J. 274, 5175–5187 (2007).
    Article CAS PubMed Google Scholar
  7. Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).
    Article CAS PubMed Google Scholar
  8. Kassenbrock, C.K., Garcia, P.D., Walter, P. & Kelly, R.B. Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature 333, 90–93 (1988).
    Article CAS PubMed Google Scholar
  9. Alder, N.N., Shen, Y., Brodsky, J.L., Hendershot, L.M. & Johnson, A.E. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J. Cell Biol. 168, 389–399 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  10. Dudek, J. et al. ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nat. Struct. Mol. Biol. 12, 1008–1014 (2005).
    Article CAS PubMed Google Scholar
  11. Otero, J.H., Lizak, B. & Hendershot, L.M. Life and death of a BiP substrate. Semin. Cell Dev. Biol. 21, 472–478 (2009).
    Article PubMed PubMed Central Google Scholar
  12. Vembar, S.S. & Brodsky, J.L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  13. Bole, D.G., Hendershot, L.M. & Kearney, J.F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102, 1558–1566 (1986).
    Article CAS PubMed Google Scholar
  14. Feige, M.J. et al. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol. Cell 34, 569–579 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  15. Lee, Y.K., Brewer, J.W., Hellman, R. & Hendershot, L.M. BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Mol. Biol. Cell 10, 2209–2219 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  16. Blond-Elguindi, S. et al. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75, 717–728 (1993).
    Article CAS PubMed Google Scholar
  17. Knarr, G., Gething, M.J., Modrow, S. & Buchner, J. BiP binding sequences in antibodies. J. Biol. Chem. 270, 27589–27594 (1995).
    Article CAS PubMed Google Scholar
  18. Gething, M.J. et al. Binding sites for Hsp70 molecular chaperones in natural proteins. Cold Spring Harb. Symp. Quant. Biol. 60, 417–428 (1995).
    Article CAS PubMed Google Scholar
  19. Knarr, G., Modrow, S., Todd, A., Gething, M.J. & Buchner, J. BiP-binding sequences in HIV gp160. Implications for the binding specificity of bip. J. Biol. Chem. 274, 29850–29857 (1999).
    Article CAS PubMed Google Scholar
  20. Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16, 1501–1507 (1997).
    Article PubMed PubMed Central Google Scholar
  21. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).
    Article CAS PubMed Google Scholar
  22. Zhu, X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  23. Swain, J.F. et al. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26, 27–39 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  24. Bertelsen, E.B., Chang, L., Gestwicki, J.E. & Zuiderweg, E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. USA 106, 8471–8476 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  25. Vogel, M., Mayer, M.P. & Bukau, B. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. J. Biol. Chem. 281, 38705–38711 (2006).
    Article CAS PubMed Google Scholar
  26. Goloubinoff, P. & De Los, R.P. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 32, 372–380 (2007).
    Article CAS PubMed Google Scholar
  27. Jiang, J., Lafer, E.M. & Sousa, R. Crystallization of a functionally intact Hsc70 chaperone. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 39–43 (2006).
    Article CAS PubMed Google Scholar
  28. Mapa, K. et al. The conformational dynamics of the mitochondrial Hsp70 chaperone. Mol. Cell 38, 89–100 (2010).
    Article CAS PubMed Google Scholar
  29. Woo, H.J., Jiang, J., Lafer, E.M. & Sousa, R. ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. Biochemistry 48, 11470–11477 (2009).
    Article CAS PubMed Google Scholar
  30. Craig, E.A., Huang, P., Aron, R. & Andrew, A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol. Biochem. Pharmacol. 156, 1–21 (2006).
    CAS PubMed Google Scholar
  31. Kampinga, H.H. & Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579–592 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  32. Meunier, L., Usherwood, Y.K., Chung, K.T. & Hendershot, L.M. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  33. Jin, Y., Zhuang, M. & Hendershot, L.M. ERdj3, a luminal ER DnaJ homologue, binds directly to unfolded proteins in the mammalian ER: identification of critical residues. Biochemistry 48, 41–49 (2009).
    Article CAS PubMed Google Scholar
  34. Jin, Y., Awad, W., Petrova, K. & Hendershot, L.M. Regulated release of ERdj3 from unfolded proteins by BiP. EMBO J. 27, 2873–2882 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  35. Shen, Y. & Hendershot, L.M. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Mol. Biol. Cell 16, 40–50 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  36. Bies, C. et al. Characterization of pancreatic ERj3p, a homolog of yeast DnaJ-like protein Scj1p. Biol. Chem. 385, 389–395 (2004).
    Article CAS PubMed Google Scholar
  37. Vembar, S.S., Jonikas, M.C., Hendershot, L.M., Weissman, J.S. & Brodsky, J.L. J domain co-chaperone specificity defines the role of BIP during protein translocation. J. Biol. Chem. 285, 22484–94 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  38. Vanhove, M., Usherwood, Y.K. & Hendershot, L.M. Unassembled Ig heavy chains do not cycle from BiP in vivo but require light chains to trigger their release. Immunity 15, 105–114 (2001).
    Article CAS PubMed Google Scholar
  39. Knarr, G., Kies, U., Bell, S., Mayer, M. & Buchner, J. Interaction of the chaperone BiP with an antibody domain: implications for the chaperone cycle. J. Mol. Biol. 318, 611–620 (2002).
    Article CAS PubMed Google Scholar
  40. Wei, J., Gaut, J.R. & Hendershot, L.M. In vitro dissociation of BiP-peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis. J. Biol. Chem. 270, 26677–26682 (1995).
    Article CAS PubMed Google Scholar
  41. Antonik, M., Felekyan, S., Gaiduk, A. & Seidel, C.A. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J. Phys. Chem. B 110, 6970–6978 (2006).
    Article CAS PubMed Google Scholar
  42. Kalinin, S., Felekyan, S., Antonik, M. & Seidel, C.A. Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer. J. Phys. Chem. B 111, 10253–10262 (2007).
    Article CAS PubMed Google Scholar
  43. Wei, J. & Hendershot, L.M. Characterization of the nucleotide binding properties and ATPase activity of recombinant hamster BiP purified from bacteria. J. Biol. Chem. 270, 26670–26676 (1995).
    Article CAS PubMed Google Scholar
  44. Jiang, J., Prasad, K., Lafer, E.M. & Sousa, R. Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20, 513–524 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  45. Strub, A., Zufall, N. & Voos, W. The putative helical lid of the Hsp70 peptide-binding domain is required for efficient preprotein translocation into mitochondria. J. Mol. Biol. 334, 1087–1099 (2003).
    Article CAS PubMed Google Scholar
  46. Tokunaga, M., Kato, S., Kawamura-Watabe, A., Tanaka, R. & Tokunaga, H. Characterization of deletion mutations in the carboxy-terminal peptide-binding domain of the Kar2 protein in Saccharomyces cerevisiae. Yeast 14, 1285–1295 (1998).
    Article CAS PubMed Google Scholar
  47. Schlecht, R., Erbse, A.H., Bukau, B. & Mayer, M.P . Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat. Struct. & Mol. Biol. (in the press).
  48. Shen, Y., Meunier, L. & Hendershot, L.M. Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J. Biol. Chem. 277, 15947–15956 (2002).
    Article CAS PubMed Google Scholar
  49. Vembar, S.S., Jin, Y., Brodsky, J.L. & Hendershot, L.M. The mammalian Hsp40 ERdj3 requires its Hsp70 interaction and substrate-binding properties to complement various yeast Hsp40-dependent functions. J. Biol. Chem. 284, 32462–32471 (2009).
    Article CAS PubMed PubMed Central Google Scholar
  50. Rodriguez, F. . et al. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol. Cell 32, 347–358 (2008).
    Article CAS PubMed Google Scholar
  51. Mayer, M.P., Rudiger, S. & Bukau, B. Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem. 381, 877–885 (2000).
    Article CAS PubMed Google Scholar
  52. Liu, Q. & Hendrickson, W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131, 106–120 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  53. Nørby, J.G. Coupled assay of Na+,K+-ATPase activity. Methods Enzymol. 156, 116–119 (1988).
    Article PubMed Google Scholar
  54. Müller, B.K., Zaychikov, E., Brauchle, C. & Lamb, D.C. Pulsed interleaved excitation. Biophys. J. 89, 3508–3522 (2005).
    Article PubMed PubMed Central Google Scholar
  55. Eggeling, C. et al. Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J. Biotechnol. 86, 163–180 (2001).
    Article CAS PubMed Google Scholar
  56. Kapanidis, A.N. et al. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl. Acad. Sci. USA 101, 8936–8941 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  57. Lee, N.K. et al. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88, 2939–2953 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  58. Schäfer, H., Nau, K., Sickmann, A., Erdmann, R. & Meyer, H.E. Identification of peroxisomal membrane proteins of Saccharomyces cerevisiae by mass spectrometry. Electrophoresis 22, 2955–2968 (2001).
    Article PubMed Google Scholar

Download references