Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res.19, 92–105 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tay, Y., Zhang, J., Thomson, A.M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455, 1124–1128 (2008). ArticleCASPubMed Google Scholar
Hafner, M. et al. Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell141, 129–141 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature460, 479–486 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zisoulis, D.G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol.17, 173–179 (2010). ArticleCASPubMedPubMed Central Google Scholar
Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev.22, 2773–2785 (2008). ArticleCASPubMedPubMed Central Google Scholar
Calabrese, J.M., Seila, A.C., Yeo, G.W. & Sharp, P.A. RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA104, 18097–18102 (2007). ArticleCASPubMedPubMed Central Google Scholar
Houbaviy, H.B., Murray, M.F. & Sharp, P.A. Embryonic stem cell-specific MicroRNAs. Dev. Cell5, 351–358 (2003). ArticleCASPubMed Google Scholar
Yeo, G.W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol.16, 130–137 (2009). ArticleCASPubMedPubMed Central Google Scholar
Leung, A.K., Calabrese, J.M. & Sharp, P.A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. USA103, 18125–18130 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yoda, M. et al. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol.17, 17–23 (2010). ArticleCASPubMed Google Scholar
Ciaudo, C. et al. Highly dynamic and sex-specific expression of microRNAs during early ES cell differentiation. PLoS Genet.5, e1000620 (2009). ArticlePubMedPubMed Central Google Scholar
Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol.2, 28–36 (1994). CASPubMed Google Scholar
Sinha, S. & Tompa, M. Discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res.30, 5549–5560 (2002). ArticleCASPubMedPubMed Central Google Scholar
Behm-Ansmant, I., Rehwinkel, J. & Izaurralde, E. MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb. Symp. Quant. Biol.71, 523–530 (2006). ArticleCASPubMed Google Scholar
Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science310, 1817–1821 (2005). ArticleCASPubMed Google Scholar
Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005). ArticleCASPubMed Google Scholar
Pillai, R.S., Artus, C.G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA10, 1518–1525 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet.40, 1478–1483 (2008). ArticleCASPubMedPubMed Central Google Scholar
Benetti, R. et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol.15, 268–279 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol.15, 259–267 (2008). ArticleCASPubMed Google Scholar
Foshay, K.M. & Gallicano, G.I. miR-17 family miRNAs are expressed during early mammalian development and regulate stem cell differentiation. Dev. Biol.326, 431–443 (2009). ArticleCASPubMed Google Scholar
Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat. Immunol.9, 405–414 (2008). ArticleCASPubMedPubMed Central Google Scholar
Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature434, 338–345 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kloosterman, W.P., Wienholds, E., Ketting, R.F. & Plasterk, R.H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res.32, 6284–6291 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M.A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol.16, 144–150 (2009). ArticleCASPubMedPubMed Central Google Scholar
Melton, C., Judson, R.L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature463, 621–626 (2010). ArticleCASPubMedPubMed Central Google Scholar
Judson, R.L., Babiarz, J.E., Venere, M. & Blelloch, R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol.27, 459–461 (2009). ArticleCASPubMedPubMed Central Google Scholar
Choi, W.Y., Giraldez, A.J. & Schier, A.F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science318, 271–274 (2007). ArticleCASPubMed Google Scholar
Rosa, A., Spagnoli, F.M. & Brivanlou, A.H. The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev. Cell16, 517–527 (2009). ArticleCASPubMed Google Scholar
Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S. & Carthew, R.W. A microRNA imparts robustness against environmental fluctuation during development. Cell137, 273–282 (2009). ArticleCASPubMedPubMed Central Google Scholar
Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell134, 521–533 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell26, 753–767 (2007). ArticleCASPubMedPubMed Central Google Scholar
Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev.16, 2491–2496 (2002). ArticleCASPubMedPubMed Central Google Scholar
Edbauer, D. et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron65, 373–384 (2010). ArticleCASPubMedPubMed Central Google Scholar
Höck, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep.8, 1052–1060 (2007). ArticlePubMedPubMed Central Google Scholar
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet.39, 1278–1284 (2007). ArticleCASPubMed Google Scholar
Ule, J., Jensen, K., Mele, A. & Darnell, R.B. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods37, 376–386 (2005). ArticleCASPubMed Google Scholar
Calabrese, J.M. & Sharp, P.A. Characterization of the short RNAs bound by the P19 suppressor of RNA silencing in mouse embryonic stem cells. RNA12, 2092–2102 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bailey, T.L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics14, 48–54 (1998). ArticleCASPubMed Google Scholar