Two-way communications between ubiquitin-like modifiers and DNA (original) (raw)
Flotho, A. & Melchior, F. SUMOylation: a regulatory protein modification in health and disease. Annu. Rev. Biochem.82, 357–385 (2013). ArticleCASPubMed Google Scholar
Jackson, S.P. & Durocher, D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell49, 795–807 (2013). ArticleCASPubMed Google Scholar
Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol.22, 159–180 (2006). ArticleCASPubMed Google Scholar
Ulrich, H.D. & Walden, H. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol.11, 479–489 (2010). ArticleCASPubMed Google Scholar
Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev.18, 2046–2059 (2004). ArticleCASPubMed Google Scholar
Müller, S., Ledl, A. & Schmidt, D. SUMO: a regulator of gene expression and genome integrity. Oncogene23, 1998–2008 (2004). ArticlePubMedCAS Google Scholar
Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature458, 461–467 (2009). ArticleCASPubMed Google Scholar
Aravind, L. & Koonin, E.V. SAP: a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci.25, 112–114 (2000). ArticleCASPubMed Google Scholar
Palvimo, J.J. PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription. Biochem. Soc. Trans.35, 1405–1408 (2007). ArticleCASPubMed Google Scholar
Suzuki, R. et al. Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa. Proteins75, 336–347 (2009). ArticleCASPubMed Google Scholar
Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G. & Jentsch, S. _RAD6_-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature419, 135–141 (2002). ArticleCASPubMed Google Scholar
Huttner, D. & Ulrich, H.D. Cooperation of replication protein A with the ubiquitin ligase Rad18 in DNA damage bypass. Cell Cycle7, 3629–3633 (2008). ArticleCASPubMed Google Scholar
Nakajima, S. et al. Replication-dependent and -independent responses of RAD18 to DNA damage in human cells. J. Biol. Chem.281, 34687–34695 (2006). ArticleCASPubMed Google Scholar
Notenboom, V. et al. Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Res.35, 5819–5830 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tsuji, Y. et al. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells13, 343–354 (2008). ArticleCASPubMed Google Scholar
Hopfner, K.P., Gerhold, C.B., Lakomek, K. & Wollmann, P. Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines. Curr. Opin. Struct. Biol.22, 225–233 (2012). ArticleCASPubMedPubMed Central Google Scholar
Eisen, J.A., Sweder, K.S. & Hanawalt, P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res.23, 2715–2723 (1995). ArticleCASPubMedPubMed Central Google Scholar
Lawrence, C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? BioEssays16, 253–258 (1994). ArticleCASPubMed Google Scholar
Parker, J.L. & Ulrich, H.D. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J.28, 3657–3666 (2009). ArticleCASPubMedPubMed Central Google Scholar
Garg, P. & Burgers, P.M. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases η and REV1. Proc. Natl. Acad. Sci. USA102, 18361–18366 (2005). ArticleCASPubMedPubMed Central Google Scholar
Iyer, L.M., Babu, M.M. & Aravind, L. The HIRAN domain and recruitment of chromatin remodeling and repair activities to damaged DNA. Cell Cycle5, 775–782 (2006). ArticleCASPubMed Google Scholar
Blastyák, A., Hajdu, I., Unk, I. & Haracska, L. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol. Cell. Biol.30, 684–693 (2010). ArticlePubMedCAS Google Scholar
Blastyák, A. et al. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell28, 167–175 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Uzunova, K. et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem.282, 34167–34175 (2007). ArticleCASPubMed Google Scholar
Lescasse, R., Pobiega, S., Callebaut, I. & Marcand, S. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1. EMBO J.32, 805–815 (2013). ArticleCASPubMedPubMed Central Google Scholar
Häkli, M., Karvonen, U., Janne, O.A. & Palvimo, J.J. The RING finger protein SNURF is a bifunctional protein possessing DNA binding activity. J. Biol. Chem.276, 23653–23660 (2001). ArticlePubMed Google Scholar
Vidal, M. Role of polycomb proteins Ring1A and Ring1B in the epigenetic regulation of gene expression. Int. J. Dev. Biol.53, 355–370 (2009). ArticleCASPubMed Google Scholar
Bentley, M.L. et al. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J.30, 3285–3297 (2011). ArticleCASPubMedPubMed Central Google Scholar
Scrima, A. et al. Detecting UV-lesions in the genome: the modular CRL4 ubiquitin ligase does it best!. FEBS Lett.585, 2818–2825 (2011). ArticleCASPubMed Google Scholar
Sugasawa, K. Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat. Res.685, 29–37 (2010). ArticleCASPubMed Google Scholar
Fischer, E.S. et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell147, 1024–1039 (2011). ArticleCASPubMed Google Scholar
Yeh, J.I. et al. Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair. Proc. Natl. Acad. Sci. USA109, E2737–E2746 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kegel, A. & Sjogren, C. The Smc5/6 complex: more than repair? Cold Spring Harb. Symp. Quant. Biol.75, 179–187 (2010). ArticleCASPubMed Google Scholar
Andrews, E.A. et al. Nse2, a component of the Smc5–6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol.25, 185–196 (2005). ArticleCASPubMedPubMed Central Google Scholar
Duan, X. et al. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol. Cell35, 657–668 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA102, 4777–4782 (2005). ArticleCASPubMedPubMed Central Google Scholar
Doyle, J.M., Gao, J., Wang, J., Yang, M. & Potts, P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell39, 963–974 (2010). ArticleCASPubMedPubMed Central Google Scholar
Coulthard, R. et al. Architecture and DNA recognition elements of the Fanconi anemia FANCM-FAAP24 complex. Structure21, 1648–1658 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tao, Y. et al. The structure of the FANCM–MHF complex reveals physical features for functional assembly. Nat. Commun.3, 782 (2012). ArticlePubMedCAS Google Scholar
Morohashi, H., Maculins, T. & Labib, K. The amino-terminal TPR domain of Dia2 tethers SCFDia2 to the replisome progression complex. Curr. Biol.19, 1943–1949 (2009). ArticleCASPubMed Google Scholar
Mimura, S., Komata, M., Kishi, T., Shirahige, K. & Kamura, T. SCFDia2 regulates DNA replication forks during S-phase in budding yeast. EMBO J.28, 3693–3705 (2009). ArticleCASPubMedPubMed Central Google Scholar
Andress, E.J., Holic, R., Edelmann, M.J., Kessler, B.M. & Yu, V.P. Dia2 controls transcription by mediating assembly of the RSC complex. PLoS ONE6, e21172 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kim, J. & Roeder, R.G. Direct Bre1-Paf1 complex interactions and RING finger-independent Bre1-Rad6 interactions mediate histone H2B ubiquitylation in yeast. J. Biol. Chem.284, 20582–20592 (2009). ArticleCASPubMedPubMed Central Google Scholar
Davies, A.A., Huttner, D., Daigaku, Y., Chen, S. & Ulrich, H.D. Activation of ubiquitin-dependent DNA damage bypass is mediated by Replication Protein A. Mol. Cell29, 625–636 (2008). ArticleCASPubMedPubMed Central Google Scholar
Niimi, A. et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl. Acad. Sci. USA105, 16125–16130 (2008). ArticleCASPubMedPubMed Central Google Scholar
Al-Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst.)9, 1229–1240 (2010). ArticleCAS Google Scholar
Bekker-Jensen, S. & Mailand, N. The ubiquitin- and SUMO-dependent signaling response to DNA double-strand breaks. FEBS Lett.585, 2914–2919 (2011). ArticleCASPubMed Google Scholar
Mermershtain, I. & Glover, J.N. Structural mechanisms underlying signaling in the cellular response to DNA double strand breaks. Mutat. Res.750, 15–22 (2013). ArticleCASPubMed Google Scholar
Lou, Z. et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol. Cell21, 187–200 (2006). ArticleCASPubMed Google Scholar
Stewart, G.S., Wang, B., Bignell, C.R., Taylor, A.M. & Elledge, S.J. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature421, 961–966 (2003). ArticleCASPubMed Google Scholar
Stucki, M. et al. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell123, 1213–1226 (2005). ArticleCASPubMed Google Scholar
Huen, M.S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell131, 901–914 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell131, 887–900 (2007). ArticleCASPubMed Google Scholar
Bekker-Jensen, S. et al. HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat. Cell Biol.12, 80–86 (2010). ArticleCASPubMed Google Scholar
Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell136, 435–446 (2009). ArticleCASPubMed Google Scholar
Stewart, G.S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell136, 420–434 (2009). ArticleCASPubMed Google Scholar
Mattiroli, F. et al. RNF168 ubiquitinates K13–15 on H2A/H2AX to drive DNA damage signaling. Cell150, 1182–1195 (2012). ArticleCASPubMed Google Scholar
Panier, S. et al. Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks. Mol. Cell47, 383–395 (2012). ArticleCASPubMed Google Scholar
Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science316, 1202–1205 (2007). ArticleCASPubMed Google Scholar
Liu, Z., Wu, J. & Yu, X. CCDC98 targets BRCA1 to DNA damage sites. Nat. Struct. Mol. Biol.14, 716–720 (2007). ArticleCASPubMed Google Scholar
Paull, T.T., Cortez, D., Bowers, B., Elledge, S.J. & Gellert, M. Direct DNA binding by Brca1. Proc. Natl. Acad. Sci. USA98, 6086–6091 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yamane, K., Katayama, E. & Tsuruo, T. The BRCT regions of tumor suppressor BRCA1 and of XRCC1 show DNA end binding activity with a multimerizing feature. Biochem. Biophys. Res. Commun.279, 678–684 (2000). ArticleCASPubMed Google Scholar
Vyas, R. et al. RNF4 is required for DNA double-strand break repair in vivo. Cell Death Differ.20, 490–502 (2013). ArticleCASPubMed Google Scholar
Yin, Y. et al. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage. Genes Dev.26, 1196–1208 (2012). ArticleCASPubMedPubMed Central Google Scholar
Galanty, Y., Belotserkovskaya, R., Coates, J. & Jackson, S.P. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev.26, 1179–1195 (2012). ArticleCASPubMedPubMed Central Google Scholar
Parker, J.L. & Ulrich, H.D. A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res.40, 11380–11388 (2012). ArticleCASPubMedPubMed Central Google Scholar
Arias, E.E. & Walter, J.C. Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev.19, 114–126 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hu, J., McCall, C.M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1–CUL4A–ROC1 ligase in response to DNA damage. Nat. Cell Biol.6, 1003–1009 (2004). ArticleCASPubMed Google Scholar
Kondo, T. et al. Rapid degradation of Cdt1 upon UV-induced DNA damage is mediated by SCFSkp2 complex. J. Biol. Chem.279, 27315–27319 (2004). ArticleCASPubMed Google Scholar
Arias, E.E. & Walter, J.C. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat. Cell Biol.8, 84–90 (2006). ArticleCASPubMed Google Scholar
Hu, J. & Xiong, Y. An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cul4-Ddb1 ubiquitin ligase in response to DNA damage. J. Biol. Chem.281, 3753–3756 (2006). ArticleCASPubMed Google Scholar
Jin, J., Arias, E.E., Chen, J., Harper, J.W. & Walter, J.C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell23, 709–721 (2006). ArticleCASPubMed Google Scholar
Senga, T. et al. PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J. Biol. Chem.281, 6246–6252 (2006). ArticleCASPubMed Google Scholar
Havens, C.G. & Walter, J.C. Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol. Cell35, 93–104 (2009). ArticleCASPubMedPubMed Central Google Scholar
Havens, C.G. et al. Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. J. Biol. Chem.287, 11410–11421 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y., Starostina, N.G. & Kipreos, E.T. The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev.22, 2507–2519 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nishitani, H. et al. CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4–DDB1Cdt2 pathway during S phase and after UV irradiation. J. Biol. Chem.283, 29045–29052 (2008). ArticleCASPubMedPubMed Central Google Scholar
Abbas, T. et al. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev.22, 2496–2506 (2008). ArticleCASPubMedPubMed Central Google Scholar
Centore, R.C. et al. CRL4Cdt2-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol. Cell40, 22–33 (2010). ArticleCASPubMedPubMed Central Google Scholar
Liu, C. et al. Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes Dev.17, 1130–1140 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bacquin, A. et al. The helicase FBH1 is tightly regulated by PCNA via CRL4Cdt2-mediated proteolysis in human cells. Nucleic Acids Res.41, 6501–6513 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shibutani, S.T. et al. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell15, 890–900 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, S.H. & Michael, W.M. Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Mol. Cell32, 757–766 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mortensen, U.H., Bendixen, C., Sunjevaric, I. & Rothstein, R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. Acad. Sci. USA93, 10729–10734 (1996). ArticleCASPubMedPubMed Central Google Scholar
Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S. & Ogawa, T. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells3, 145–156 (1998). ArticleCASPubMed Google Scholar
Sacher, M., Pfander, B., Hoege, C. & Jentsch, S. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat. Cell Biol.8, 1284–1290 (2006). ArticleCASPubMed Google Scholar
Torres-Rosell, J. et al. The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol.9, 923–931 (2007). ArticleCASPubMed Google Scholar
Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell19, 123–133 (2005). ArticleCASPubMed Google Scholar
Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature436, 428–433 (2005). ArticleCASPubMed Google Scholar
Windecker, H. & Ulrich, H.D. Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J. Mol. Biol.376, 221–231 (2008). ArticleCASPubMed Google Scholar
Zilio, N. et al. DNA-dependent SUMO modification of PARP-1. DNA Repair (Amst.)12, 761–773 (2013). ArticleCAS Google Scholar
Woodhouse, B.C. & Dianov, G.L. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst.)7, 1077–1086 (2008). ArticleCAS Google Scholar
Messner, S. et al. SUMOylation of poly(ADP-ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function. FASEB J.23, 3978–3989 (2009). ArticleCASPubMed Google Scholar
Wilson, M.D., Harreman, M. & Svejstrup, J.Q. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. Biochim. Biophys. Acta1829, 151–157 (2013). ArticleCASPubMed Google Scholar
Harreman, M. et al. Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc. Natl. Acad. Sci. USA106, 20705–20710 (2009). ArticleCASPubMedPubMed Central Google Scholar
Somesh, B.P. et al. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell121, 913–923 (2005). ArticleCASPubMed Google Scholar
Somesh, B.P. et al. Communication between distant sites in RNA polymerase II through ubiquitylation factors and the polymerase CTD. Cell129, 57–68 (2007). ArticleCASPubMed Google Scholar
Wilson, M.D. et al. Proteasome-mediated processing of Def1, a critical step in the cellular response to transcription stress. Cell154, 983–995 (2013). ArticleCASPubMedPubMed Central Google Scholar
Woudstra, E.C. et al. A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage. Nature415, 929–933 (2002). ArticleCASPubMed Google Scholar
Nakagawa, K. & Yokosawa, H. Degradation of transcription factor IRF-1 by the ubiquitin-proteasome pathway: the C-terminal region governs the protein stability. Eur. J. Biochem.267, 1680–1686 (2000). ArticleCASPubMed Google Scholar
Landré, V., Pion, E., Narayan, V., Xirodimas, D.P. & Ball, K.L. DNA-binding regulates site-specific ubiquitination of IRF-1. Biochem. J.449, 707–717 (2013). ArticlePubMedCAS Google Scholar
Cortázar, D., Kunz, C., Saito, Y., Steinacher, R. & Schar, P. The enigmatic thymine DNA glycosylase. DNA Repair (Amst.)6, 489–504 (2007). ArticleCAS Google Scholar
Hardeland, U., Steinacher, R., Jiricny, J. & Schär, P. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J.21, 1456–1464 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fitzgerald, M.E. & Drohat, A.C. Coordinating the initial steps of base excision repair: apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex. J. Biol. Chem.283, 32680–32690 (2008). ArticleCASPubMedPubMed Central Google Scholar
Baba, D. et al. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature435, 979–982 (2005). ArticleCASPubMed Google Scholar
Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol.15, 616–623 (2005). ArticleCASPubMed Google Scholar
Kapetanaki, M.G. et al. The DDB1–CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc. Natl. Acad. Sci. USA103, 2588–2593 (2006). ArticleCASPubMed Google Scholar
Wang, H. et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell22, 383–394 (2006). ArticlePubMedCAS Google Scholar
Lan, L. et al. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J. Biol. Chem.287, 12036–12049 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem.75, 243–269 (2006). ArticleCASPubMed Google Scholar
Sato, K., Toda, K., Ishiai, M., Takata, M. & Kurumizaka, H. DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. Nucleic Acids Res.40, 4553–4561 (2012). ArticleCASPubMedPubMed Central Google Scholar