The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle (original) (raw)
References
Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol.5, 177–187 (2004). ArticleCAS Google Scholar
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature386, 463–471 (1997). ArticleCAS Google Scholar
Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol.7, 1062–1067 (2000). ArticleCAS Google Scholar
Braun, B.C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol.1, 221–226 (1999). ArticleCAS Google Scholar
Liu, C.W. et al. Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J. Biol. Chem.277, 26815–26820 (2002). ArticleCAS Google Scholar
Schmidt, M., Lupas, A.N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol.3, 584–591 (1999). ArticleCAS Google Scholar
Hartmann-Petersen, R., Tanaka, K. & Hendil, K.B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys.386, 89–94 (2001). ArticleCAS Google Scholar
Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol.11, 830–837 (2004). ArticleCAS Google Scholar
Navon, A. & Goldberg, A.L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell8, 1339–1349 (2001). ArticleCAS Google Scholar
Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L. & Pickart, C.M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature416, 763–767 (2002). ArticleCAS Google Scholar
Elsasser, S., Chandler-Militello, D., Mueller, B., Hanna, J. & Finley, D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem.279, 26817–26822 (2004). ArticleCAS Google Scholar
Verma, R., Oania, R., Graumann, J. & Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell118, 99–110 (2004). ArticleCAS Google Scholar
Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature419, 403–407 (2002). ArticleCAS Google Scholar
Leggett, D.S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell10, 495–507 (2002). ArticleCAS Google Scholar
Guterman, A. & Glickman, M.H. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J. Biol. Chem.279, 1729–1738 (2004). ArticleCAS Google Scholar
Wojcik, C., Tanaka, K., Paweletz, N., Naab, U. & Wilk, S. Proteasome activator (PA28) subunits, α, β and γ (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur. J. Cell Biol.77, 151–160 (1998). ArticleCAS Google Scholar
Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J.21, 3516–3525 (2002). ArticleCAS Google Scholar
Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature408, 115–120 (2000). ArticleCAS Google Scholar
Forster, A., Whitby, F.G. & Hill, C.P. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J.22, 4356–4364 (2003). Article Google Scholar
Tanahashi, N. et al. Hybrid proteasomes. Induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem.275, 14336–14345 (2000). ArticleCAS Google Scholar
Doherty, K., Pramanik, A., Pride, L., Lukose, J. & Wood Moore, C. Expression of the expanded YFL007w ORF and assignment of the gene name BLM10. Yeast21, 1021 (2004).
Fehlker, M., Wendler, P., Lehmann, A. & Enenkel, C. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep.4, 959–963 (2003). ArticleCAS Google Scholar
Glickman, M.H., Rubin, D.M., Fried, V.A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol.18, 3149–3162 (1998). ArticleCAS Google Scholar
Kopp, F., Dahlmann, B. & Kuehn, L. Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28αβ activator: ultrastructure and peptidase activities. J. Mol. Biol.313, 465–471 (2001). ArticleCAS Google Scholar
Cascio, P., Call, M., Petre, B.M., Walz, T. & Goldberg, A.L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J.21, 2636–2645 (2002). ArticleCAS Google Scholar
Kajava, A.V., Gorbea, C., Ortega, J., Rechsteiner, M. & Steven, A.C. New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J. Struct. Biol.146, 425–430 (2004). ArticleCAS Google Scholar
Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell96, 99–110 (1999). ArticleCAS Google Scholar
Chook, Y.M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2-Ran t · GppNHp. Nature399, 230–237 (1999). ArticleCAS Google Scholar
Vetter, I.R., Arndt, A., Kutay, U., Gorlich, D. & Wittinghofer, A. Structural view of the Ran-importin β interaction at 2.3 Å resolution. Cell97, 635–646 (1999). ArticleCAS Google Scholar
Goldenberg, S.J. et al. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell119, 517–528 (2004). ArticleCAS Google Scholar
Meiners, S. et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J. Biol. Chem.278, 21517–21525 (2003). ArticleCAS Google Scholar
London, M.K., Keck, B.I., Ramos, P.C. & Jurgen Dohmen, R. Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett.567, 259–264 (2004). ArticleCAS Google Scholar
Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl. Acad. Sci. USA98, 3056–3061 (2001). ArticleCAS Google Scholar
Andrade, M.A., Petosa, C., O'Donoghue, S.I., Muller, C.W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol.309, 1–18 (2001). ArticleCAS Google Scholar
Moore, C.W. Further characterizations of bleomycin-sensitive (blm) mutants of Saccharomyces cerevisiae with implications for a radiomimetic model. J. Bacteriol.173, 3605–3608 (1991). ArticleCAS Google Scholar
Krogan, N.J. et al. Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell16, 1027–1034 (2004). ArticleCAS Google Scholar
Andrade, M.A., Perez-Iratxeta, C. & Ponting, C.P. Protein repeats: structures, functions, and evolution. J. Struct. Biol.134, 117–131 (2001). ArticleCAS Google Scholar
Kajava, A.V. Review: proteins with repeated sequence—structural prediction and modeling. J. Struct. Biol.134, 132–144 (2001). ArticleCAS Google Scholar
Chen, P. & Hochstrasser, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell86, 961–972 (1996). ArticleCAS Google Scholar
Forster, A. & Hill, C.P. Proteasome degradation: enter the substrate. Trends Cell Biol.13, 550–553 (2003). ArticleCAS Google Scholar
McCutchen-Maloney, S.L. et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem.275, 18557–18565 (2000). ArticleCAS Google Scholar
Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature381, 166–168 (1996). ArticleCAS Google Scholar
Sijts, A. et al. The role of the proteasome activator PA28 in MHC class I antigen processing. Mol. Immunol.39, 165–169 (2002). ArticleCAS Google Scholar
Murata, S. et al. Growth retardation in mice lacking the proteasome activator PA28γ. J. Biol. Chem.274, 38211–38215 (1999). ArticleCAS Google Scholar
Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast14, 115–132 (1998). ArticleCAS Google Scholar
Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast15, 1541–1553 (1999). ArticleCAS Google Scholar
Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast15, 963–972 (1999). ArticleCAS Google Scholar
Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast14, 953–961 (1998). ArticleCAS Google Scholar
Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol.116, 190–199 (1996). ArticleCAS Google Scholar
Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proceed. Online6, 23–34 (2004). ArticleCAS Google Scholar
Gerlinger, U.M., Guckel, R., Hoffmann, M., Wolf, D.H. & Hilt, W. Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol. Biol. Cell8, 2487–2499 (1997). ArticleCAS Google Scholar
Robben, J., Hertveldt, K., & Volckaert, G. Revisiting the yeast chromosome VI DNA sequence reveals a correction merging YFL007w and YFL006w to a single ORF. Yeast19, 699–702 (2002). ArticleCAS Google Scholar