The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle (original) (raw)

References

  1. Pickart, C.M. & Cohen, R.E. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5, 177–187 (2004).
    Article CAS Google Scholar
  2. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).
    Article CAS Google Scholar
  3. Groll, M. et al. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7, 1062–1067 (2000).
    Article CAS Google Scholar
  4. Braun, B.C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1, 221–226 (1999).
    Article CAS Google Scholar
  5. Liu, C.W. et al. Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J. Biol. Chem. 277, 26815–26820 (2002).
    Article CAS Google Scholar
  6. Schmidt, M., Lupas, A.N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol. 3, 584–591 (1999).
    Article CAS Google Scholar
  7. Hartmann-Petersen, R., Tanaka, K. & Hendil, K.B. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys. 386, 89–94 (2001).
    Article CAS Google Scholar
  8. Prakash, S., Tian, L., Ratliff, K.S., Lehotzky, R.E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11, 830–837 (2004).
    Article CAS Google Scholar
  9. Navon, A. & Goldberg, A.L. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 8, 1339–1349 (2001).
    Article CAS Google Scholar
  10. Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L. & Pickart, C.M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767 (2002).
    Article CAS Google Scholar
  11. Elsasser, S., Chandler-Militello, D., Mueller, B., Hanna, J. & Finley, D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279, 26817–26822 (2004).
    Article CAS Google Scholar
  12. Verma, R., Oania, R., Graumann, J. & Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99–110 (2004).
    Article CAS Google Scholar
  13. Yao, T. & Cohen, R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).
    Article CAS Google Scholar
  14. Leggett, D.S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).
    Article CAS Google Scholar
  15. Guterman, A. & Glickman, M.H. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J. Biol. Chem. 279, 1729–1738 (2004).
    Article CAS Google Scholar
  16. Wojcik, C., Tanaka, K., Paweletz, N., Naab, U. & Wilk, S. Proteasome activator (PA28) subunits, α, β and γ (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur. J. Cell Biol. 77, 151–160 (1998).
    Article CAS Google Scholar
  17. Ustrell, V., Hoffman, L., Pratt, G. & Rechsteiner, M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21, 3516–3525 (2002).
    Article CAS Google Scholar
  18. Whitby, F.G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000).
    Article CAS Google Scholar
  19. Forster, A., Whitby, F.G. & Hill, C.P. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 22, 4356–4364 (2003).
    Article Google Scholar
  20. Tanahashi, N. et al. Hybrid proteasomes. Induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem. 275, 14336–14345 (2000).
    Article CAS Google Scholar
  21. Doherty, K., Pramanik, A., Pride, L., Lukose, J. & Wood Moore, C. Expression of the expanded YFL007w ORF and assignment of the gene name BLM10. Yeast 21, 1021 (2004).
  22. Fehlker, M., Wendler, P., Lehmann, A. & Enenkel, C. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 4, 959–963 (2003).
    Article CAS Google Scholar
  23. Glickman, M.H., Rubin, D.M., Fried, V.A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149–3162 (1998).
    Article CAS Google Scholar
  24. Kopp, F., Dahlmann, B. & Kuehn, L. Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28αβ activator: ultrastructure and peptidase activities. J. Mol. Biol. 313, 465–471 (2001).
    Article CAS Google Scholar
  25. Cascio, P., Call, M., Petre, B.M., Walz, T. & Goldberg, A.L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 21, 2636–2645 (2002).
    Article CAS Google Scholar
  26. Kajava, A.V., Gorbea, C., Ortega, J., Rechsteiner, M. & Steven, A.C. New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J. Struct. Biol. 146, 425–430 (2004).
    Article CAS Google Scholar
  27. Groves, M.R., Hanlon, N., Turowski, P., Hemmings, B.A. & Barford, D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999).
    Article CAS Google Scholar
  28. Chook, Y.M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2-Ran t · GppNHp. Nature 399, 230–237 (1999).
    Article CAS Google Scholar
  29. Vetter, I.R., Arndt, A., Kutay, U., Gorlich, D. & Wittinghofer, A. Structural view of the Ran-importin β interaction at 2.3 Å resolution. Cell 97, 635–646 (1999).
    Article CAS Google Scholar
  30. Goldenberg, S.J. et al. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119, 517–528 (2004).
    Article CAS Google Scholar
  31. Meiners, S. et al. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J. Biol. Chem. 278, 21517–21525 (2003).
    Article CAS Google Scholar
  32. London, M.K., Keck, B.I., Ramos, P.C. & Jurgen Dohmen, R. Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett. 567, 259–264 (2004).
    Article CAS Google Scholar
  33. Xie, Y. & Varshavsky, A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl. Acad. Sci. USA 98, 3056–3061 (2001).
    Article CAS Google Scholar
  34. Andrade, M.A., Petosa, C., O'Donoghue, S.I., Muller, C.W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001).
    Article CAS Google Scholar
  35. Moore, C.W. Further characterizations of bleomycin-sensitive (blm) mutants of Saccharomyces cerevisiae with implications for a radiomimetic model. J. Bacteriol. 173, 3605–3608 (1991).
    Article CAS Google Scholar
  36. Krogan, N.J. et al. Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell 16, 1027–1034 (2004).
    Article CAS Google Scholar
  37. Andrade, M.A., Perez-Iratxeta, C. & Ponting, C.P. Protein repeats: structures, functions, and evolution. J. Struct. Biol. 134, 117–131 (2001).
    Article CAS Google Scholar
  38. Kajava, A.V. Review: proteins with repeated sequence—structural prediction and modeling. J. Struct. Biol. 134, 132–144 (2001).
    Article CAS Google Scholar
  39. Chen, P. & Hochstrasser, M. Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86, 961–972 (1996).
    Article CAS Google Scholar
  40. Forster, A. & Hill, C.P. Proteasome degradation: enter the substrate. Trends Cell Biol. 13, 550–553 (2003).
    Article CAS Google Scholar
  41. McCutchen-Maloney, S.L. et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem. 275, 18557–18565 (2000).
    Article CAS Google Scholar
  42. Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature 381, 166–168 (1996).
    Article CAS Google Scholar
  43. Sijts, A. et al. The role of the proteasome activator PA28 in MHC class I antigen processing. Mol. Immunol. 39, 165–169 (2002).
    Article CAS Google Scholar
  44. Murata, S. et al. Growth retardation in mice lacking the proteasome activator PA28γ. J. Biol. Chem. 274, 38211–38215 (1999).
    Article CAS Google Scholar
  45. Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).
    Article CAS Google Scholar
  46. Goldstein, A.L. & McCusker, J.H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).
    Article CAS Google Scholar
  47. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).
    Article CAS Google Scholar
  48. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
    Article CAS Google Scholar
  49. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).
    Article CAS Google Scholar
  50. Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proceed. Online 6, 23–34 (2004).
    Article CAS Google Scholar
  51. Gerlinger, U.M., Guckel, R., Hoffmann, M., Wolf, D.H. & Hilt, W. Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol. Biol. Cell 8, 2487–2499 (1997).
    Article CAS Google Scholar
  52. Robben, J., Hertveldt, K., & Volckaert, G. Revisiting the yeast chromosome VI DNA sequence reveals a correction merging YFL007w and YFL006w to a single ORF. Yeast 19, 699–702 (2002).
    Article CAS Google Scholar

Download references