BH3-only proteins in apoptosis and beyond: an overview (original) (raw)
Akiyama T, Bouillet P, Miyazaki T, Kadono Y, Chikuda H, Chung UI et al. (2003). Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. EMBO J22: 6653–6664. ArticleCASPubMedPubMed Central Google Scholar
Arena V, Martini M, Luongo M, Capelli A, Larocca LM . (2003). Mutations of the BIK gene in human peripheral B-cell lymphomas. Genes Chromosomes Cancer38: 91–96. ArticleCASPubMed Google Scholar
Bachmann PS, Gorman R, Mackenzie KL, Lutze-Mann L, Lock RB . (2005). Dexamethasone resistance in B-cell precursor childhood acute lymphoblastic leukemia occurs downstream of ligand-induced nuclear translocation of the glucocorticoid receptor. Blood105: 2519–2526. ArticleCASPubMed Google Scholar
Bae J, Leo CP, Hsu SY, Hsueh AJ . (2000). MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem275: 25255–25261. ArticleCASPubMed Google Scholar
Bai L, Ni HM, Chen X, DiFrancesca D, Yin XM . (2005). Deletion of Bid impedes cell proliferation and hepatic carcinogenesis. Am J Pathol166: 1523–1532. ArticleCASPubMedPubMed Central Google Scholar
Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP et al. (2005). The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell18: 637–650. ArticleCASPubMed Google Scholar
Bessho T, Sancar A . (2000). Human DNA damage checkpoint protein hRAD9 is a 3′–5′ exonuclease. J Biol Chem275: 7451–7454. ArticleCASPubMed Google Scholar
Bingle CD, Craig RW, Swales BM, Singleton V, Zhou P, Whyte MK . (2000). Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J Biol Chem275: 22136–22146. ArticleCASPubMed Google Scholar
Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A et al. (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell21: 481–493. ArticleCASPubMed Google Scholar
Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al. (1999). Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science286: 1735–1738. ArticleCASPubMed Google Scholar
Bouillet P, Strasser A . (2002). BH3-only proteins—evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci115: 1567–1574. ArticleCASPubMed Google Scholar
Boyd JM, Gallo GJ, Elangovan B, Houghton AB, Malstrom S, Avery BJ et al. (1995). Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene11: 1921–1928. CASPubMed Google Scholar
Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B et al. (1994). Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell79: 341–351. ArticleCASPubMed Google Scholar
Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD et al. (2005). High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res65: 4088–4096. ArticleCASPubMed Google Scholar
Broustas CG, Gokhale PC, Rahman A, Dritschilo A, Ahmad I, Kasid U . (2004). BRCC2, a novel BH3-like domain-containing protein, induces apoptosis in a caspase-dependent manner. J Biol Chem279: 26780–26788. ArticleCASPubMed Google Scholar
Bruick RK . (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA97: 9082–9087. ArticleCASPubMedPubMed Central Google Scholar
Burton TR, Henson ES, Baijal P, Eisenstat DD, Gibson SB . (2006). The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survival under hypoxia. Int J Cancer118: 1660–1669. ArticleCASPubMedPubMed Central Google Scholar
Cao X, Liu W, Lin F, Li H, Kolluri SK, Lin B et al. (2004). Retinoid X receptor regulates Nur77/TR3-dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol Cell Biol24: 9705–9725. ArticleCASPubMedPubMed Central Google Scholar
Cartron PF, Gallenne T, Bougras G, Gautier F, Manero F, Vusio P et al. (2004). The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell16: 807–818. ArticleCASPubMed Google Scholar
Castells A, Ino Y, Louis DN, Ramesh V, Gusella JF, Rustgi AK . (1999). Mapping of a target region of allelic loss to a 0.5-cM interval on chromosome 22q13 in human colorectal cancer. Gastroenterology117: 831–837. ArticleCASPubMed Google Scholar
Chattopadhyay A, Chiang CW, Yang E . (2001). BAD/BCL-[X(L)] heterodimerization leads to bypass of G0/G1 arrest. Oncogene20: 4507–4518. ArticleCASPubMed Google Scholar
Chen GG, Lai PB, Chak EC, Xu H, Lee KM, Lau WY . (2001). Immunohistochemical analysis of pro-apoptotic Bid level in chronic hepatitis, hepatocellular carcinoma and liver metastases. Cancer Lett172: 75–82. ArticleCASPubMed Google Scholar
Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG et al. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell17: 393–403. ArticleCASPubMed Google Scholar
Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol18: 157–164. ArticleCASPubMedPubMed Central Google Scholar
Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science303: 1010–1014. ArticleCASPubMed Google Scholar
Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B et al. (1995). A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J14: 5589–5596. ArticleCASPubMedPubMed Central Google Scholar
Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G . (1999). Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell96: 615–624. ArticleCASPubMed Google Scholar
Claveria C, Torres M . (2003). Mitochondrial apoptotic pathways induced by Drosophila programmed cell death regulators. Biochem Biophys Res Commun304: 531–537. ArticleCASPubMed Google Scholar
Conradt B, Horvitz HR . (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell93: 519–529. ArticleCASPubMed Google Scholar
Cristea IM, Degli Esposti M . (2004). Membrane lipids and cell death: an overview. Chem Phys Lipids129: 133–160. ArticleCASPubMed Google Scholar
Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DC et al. (2007). Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA104: 6217–6222. ArticleCASPubMedPubMed Central Google Scholar
Dai Z, Liu S, Marcucci G, Sadee W . (2006). 5-Aza-2′-deoxycytidine and depsipeptide synergistically induce expression of BIK (BCL2-interacting killer). Biochem Biophys Res Commun351: 455–461. ArticleCASPubMed Google Scholar
Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S . (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res64: 4286–4293. ArticleCASPubMed Google Scholar
Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature424: 952–956. ArticleCASPubMed Google Scholar
Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, Molina AJ et al. (2008). Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med14: 144–153. ArticleCASPubMedPubMed Central Google Scholar
Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG . (2008). Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J Mol Biol380: 958–971. ArticleCASPubMed Google Scholar
Denisov AY, Chen G, Sprules T, Moldoveanu T, Beauparlant P, Gehring K . (2006). Structural model of the BCL-w-BID peptide complex and its interactions with phospholipid micelles. Biochemistry45: 2250–2256. ArticleCASPubMed Google Scholar
Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ . (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol10: 1201–1204. ArticleCASPubMed Google Scholar
Diwan A, Koesters AG, Odley AM, Pushkaran S, Baines CP, Spike BT et al. (2007a). Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA104: 6794–6799. ArticleCASPubMedPubMed Central Google Scholar
Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG et al. (2007b). Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest117: 2825–2833. ArticleCASPubMedPubMed Central Google Scholar
Dorn II GW, Diwan A . (2008). The rationale for cardiomyocyte resuscitation in myocardial salvage. J Mol Med86: 1085–1095. ArticlePubMed Google Scholar
Egle A, Harris AW, Bouillet P, Cory S . (2004). Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci USA101: 6164–6169. ArticleCASPubMedPubMed Central Google Scholar
Elangovan B, Chinnadurai G . (1997). Functional dissection of the pro-apoptotic protein Bik. Heterodimerization with anti-apoptosis proteins is insufficient for induction of cell death. J Biol Chem272: 24494–24498. ArticleCASPubMed Google Scholar
Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y et al. (2001). Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem44: 4313–4324. ArticleCASPubMed Google Scholar
Esposti MD, Erler JT, Hickman JA, Dive C . (2001). Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity. Mol Cell Biol21: 7268–7276. ArticleCASPubMedPubMed Central Google Scholar
Feng W, Huang S, Wu H, Zhang M . (2007). Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol372: 223–235. ArticleCASPubMed Google Scholar
Fennell DA, Chacko A . (2008). Exploiting BH3 only protein function for effective cancer therapy. Front Biosci13: 6682–6692. ArticleCASPubMed Google Scholar
Fernandez Y, Verhaegen M, Miller TP, Rush JL, Steiner P, Opipari Jr AW et al. (2005). Differential regulation of noxa in normal melanocytes and melanoma cells by proteasome inhibition: therapeutic implications. Cancer Res65: 6294–6304. ArticleCASPubMed Google Scholar
Fernandez-Luna JL . (2008). Regulation of pro-apoptotic BH3-only proteins and its contribution to cancer progression and chemoresistance. Cell Signal20: 1921–1926. ArticleCASPubMed Google Scholar
Fleischer A, Ayllon V, Dumoutier L, Renauld JC, Rebollo A . (2002). Proapoptotic activity of ITM2B(s), a BH3-only protein induced upon IL-2-deprivation which interacts with Bcl-2. Oncogene21: 3181–3189. ArticleCASPubMed Google Scholar
Garcia N, Salamanca F, Astudillo-de la Vega H, Curiel-Quesada E, Alvarado I, Penaloza R et al. (2005). A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females. BMC Cancer5: 93. ArticlePubMedPubMed CentralCAS Google Scholar
Garcia-Saez AJ, Mingarro I, Perez-Paya E, Salgado J . (2004). Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry43: 10930–10943. ArticleCASPubMed Google Scholar
Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO . (2000). A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol Cell5: 435–443. ArticleCASPubMed Google Scholar
Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG et al. (2008). BAX activation is initiated at a novel interaction site. Nature455: 1076–1081. ArticleCASPubMedPubMed Central Google Scholar
Giatromanolaki A, Koukourakis MI, Sowter HM, Sivridis E, Gibson S, Gatter KC et al. (2004). BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clin Cancer Res10: 5566–5571. ArticleCASPubMed Google Scholar
Gilley J, Coffer PJ, Ham J . (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol162: 613–622. ArticleCASPubMedPubMed Central Google Scholar
Gillissen B, Essmann F, Hemmati PG, Richter A, Oztop I, Chinnadurai G et al. (2007). Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis. J Cell Biol179: 701–715. ArticleCASPubMedPubMed Central Google Scholar
Grinberg M, Sarig R, Zaltsman Y, Frumkin D, Grammatikakis N, Reuveny E et al. (2002). tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J Biol Chem277: 12237–12245. ArticleCASPubMed Google Scholar
Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO . (1999). Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development126: 1011–1022. ArticleCASPubMed Google Scholar
Guo B, Godzik A, Reed JC . (2001). Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J Biol Chem276: 2780–2785. ArticleCASPubMed Google Scholar
Hacker G, Weber A . (2007). BH3-only proteins trigger cytochrome c release, but how? Arch Biochem Biophys462: 150–155. ArticlePubMedCAS Google Scholar
Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA et al. (2007). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ14: 146–157. ArticleCASPubMed Google Scholar
Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ et al. (2001). Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA98: 11318–11323. ArticleCASPubMedPubMed Central Google Scholar
Han J, Sabbatini P, White E . (1996). Induction of apoptosis by human Nbk/Bik, a BH3-containing protein that interacts with E1B 19K. Mol Cell Biol16: 5857–5864. ArticleCASPubMedPubMed Central Google Scholar
Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ . (2004). Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA101: 15313–15317. ArticleCASPubMedPubMed Central Google Scholar
Hershko T, Ginsberg D . (2004). Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem279: 8627–8634. ArticleCASPubMed Google Scholar
Hetz C, Glimcher L . (2008). The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol18: 38–44. ArticleCASPubMed Google Scholar
Hinds MG, Day CL . (2005). Regulation of apoptosis: uncovering the binding determinants. Curr Opin Struct Biol15: 690–699. ArticleCASPubMed Google Scholar
Hsu SY, Lin P, Hsueh AJ . (1998). BOD (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members. Mol Endocrinol12: 1432–1440. ArticleCASPubMed Google Scholar
Huang DC, Strasser A . (2000). BH3-Only proteins-essential initiators of apoptotic cell death. Cell103: 839–842. ArticleCASPubMed Google Scholar
Hubner A, Barrett T, Flavell RA, Davis RJ . (2008). Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol Cell30: 415–425. ArticleCASPubMedPubMed Central Google Scholar
Hunter JJ, Bond BL, Parslow TG . (1996). Functional dissection of the human Bc12 protein: sequence requirements for inhibition of apoptosis. Mol Cell Biol16: 877–883. ArticleCASPubMedPubMed Central Google Scholar
Hur J, Bell DW, Dean KL, Coser KR, Hilario PC, Okimoto RA et al. (2006). Regulation of expression of BIK proapoptotic protein in human breast cancer cells: p53-dependent induction of BIK mRNA by fulvestrant and proteasomal degradation of BIK protein. Cancer Res66: 10153–10161. ArticleCASPubMed Google Scholar
Hur J, Chesnes J, Coser KR, Lee RS, Geck P, Isselbacher KJ et al. (2004). The Bik BH3-only protein is induced in estrogen-starved and antiestrogen-exposed breast cancer cells and provokes apoptosis. Proc Natl Acad Sci USA101: 2351–2356. ArticleCASPubMedPubMed Central Google Scholar
Imaizumi K, Tsuda M, Imai Y, Wanaka A, Takagi T, Tohyama M . (1997). Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death. J Biol Chem272: 18842–18848. ArticleCASPubMed Google Scholar
Inohara N, Ding L, Chen S, Nunez G . (1997). Harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J16: 1686–1694. ArticleCASPubMedPubMed Central Google Scholar
Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell4: 321–328. ArticleCASPubMed Google Scholar
Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L et al. (2005). Proapoptotic BID is an ATM effector in the DNA-damage response. Cell122: 593–603. ArticleCASPubMed Google Scholar
Kammouni W, Wong K, Ma G, Firestein GS, Gibson SB, El-Gabalawy HS . (2007). Regulation of apoptosis in fibroblast-like synoviocytes by the hypoxia-induced Bcl-2 family member Bcl-2/adenovirus E1B 19-kd protein-interacting protein 3. Arthritis Rheum56: 2854–2863. ArticleCASPubMed Google Scholar
Karbowski M, Youle RJ . (2003). Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ10: 870–880. ArticleCASPubMed Google Scholar
Karst AM, Li G . (2007). BH3-only proteins in tumorigenesis and malignant melanoma. Cell Mol Life Sci64: 318–330. ArticleCASPubMed Google Scholar
Kaufmann T, Tai L, Ekert PG, Huang DC, Norris F, Lindemann RK et al. (2007). The BH3-only protein bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell129: 423–433. ArticleCASPubMed Google Scholar
Kelekar A, Thompson CB . (1998). Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol8: 324–330. ArticleCASPubMed Google Scholar
Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T . (2001). Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep2: 330–335. ArticleCASPubMedPubMed Central Google Scholar
Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH . (2004). BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J Exp Med199: 113–124. ArticleCASPubMedPubMed Central Google Scholar
Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellecchia M . (2003). Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem46: 4259–4264. ArticleCASPubMed Google Scholar
Kluck RM, Esposti MD, Perkins G, Renken C, Kuwana T, Bossy-Wetzel E et al. (1999). The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol147: 809–822. ArticleCASPubMedPubMed Central Google Scholar
Komatsu K, Miyashita T, Hang H, Hopkins KM, Zheng W, Cuddeback S et al. (2000). Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis. Nat Cell Biol2: 1–6. ArticleCASPubMed Google Scholar
Krajewska M, Zapata JM, Meinhold-Heerlein I, Hedayat H, Monks A, Bettendorf H et al. (2002). Expression of Bcl-2 family member Bid in normal and malignant tissues. Neoplasia4: 129–140. ArticleCASPubMedPubMed Central Google Scholar
Ku B, Woo JS, Liang C, Lee KH, Hong HS, E X et al. (2008). Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog4: e25. ArticlePubMedPubMed CentralCAS Google Scholar
Kudla G, Montessuit S, Eskes R, Berrier C, Martinou JC, Ghazi A et al. (2000). The destabilization of lipid membranes induced by the C-terminal fragment of caspase 8-cleaved bid is inhibited by the N-terminal fragment. J Biol Chem275: 22713–22718. ArticleCASPubMed Google Scholar
Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al. (2005). BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell17: 525–535. ArticleCASPubMed Google Scholar
Lama D, Sankararamakrishnan R . (2008). Anti-apoptotic Bcl-X(L) protein in complex with BH3 peptides of pro-apoptotic Bak, Bad, and Bim proteins: comparative molecular dynamics simulations. Proteins73: 492–514. ArticleCASPubMed Google Scholar
Lanave C, Santamaria M, Saccone C . (2004). Comparative genomics: the evolutionary history of the Bcl-2 family. Gene333: 71–79. ArticleCASPubMed Google Scholar
Lee JH, Soung YH, Lee JW, Park WS, Kim SY, Cho YG et al. (2004). Inactivating mutation of the pro-apoptotic gene BID in gastric cancer. J Pathol202: 439–445. ArticleCASPubMed Google Scholar
Lee SH, Soung YH, Lee JW, Kim HS, Lee JH, Park JY et al. (2003). Mutational analysis of Noxa gene in human cancers. Apmis111: 599–604. ArticleCASPubMed Google Scholar
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell2: 183–192. ArticleCASPubMed Google Scholar
Leu JI, Dumont P, Hafey M, Murphy ME, George DL . (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol6: 443–450. ArticleCASPubMed Google Scholar
Ley R, Ewings KE, Hadfield K, Cook SJ . (2005). Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ12: 1008–1014. ArticleCASPubMed Google Scholar
Li H, Zhu H, Xu CJ, Yuan J . (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell94: 491–501. ArticleCASPubMed Google Scholar
Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol72: 8586–8596. ArticleCASPubMedPubMed Central Google Scholar
Lieberman HB, Hopkins KM, Nass M, Demetrick D, Davey S . (1996). A human homolog of the Schizosaccharomyces pombe rad9+ checkpoint control gene. Proc Natl Acad Sci USA93: 13890–13895. ArticleCASPubMedPubMed Central Google Scholar
Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X et al. (2004). Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell116: 527–540. ArticleCASPubMed Google Scholar
Liu H, Huang Q, Shi B, Eksarko P, Temkin V, Pope RM . (2006). Regulation of Mcl-1 expression in rheumatoid arthritis synovial macrophages. Arthritis Rheum54: 3174–3181. ArticleCASPubMed Google Scholar
Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE, Sankala H et al. (2003a). Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem278: 40330–40336. ArticleCASPubMed Google Scholar
Liu X, Dai S, Zhu Y, Marrack P, Kappler JW . (2003b). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity19: 341–352. ArticleCASPubMed Google Scholar
Liu Z, Lu H, Jiang Z, Pastuszyn A, Hu CA . (2005). Apolipoprotein l6, a novel proapoptotic Bcl-2 homology 3-only protein, induces mitochondria-mediated apoptosis in cancer cells. Mol Cancer Res3: 21–31. CASPubMed Google Scholar
Lorand L, Graham RM . (2003). Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol4: 140–156. ArticleCASPubMed Google Scholar
Losonczi JA, Olejniczak ET, Betz SF, Harlan JE, Mack J, Fesik SW . (2000). NMR studies of the anti-apoptotic protein Bcl-xL in micelles. Biochemistry39: 11024–11033. ArticleCASPubMed Google Scholar
Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, Yang P et al. (2006). A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med3: e467. ArticlePubMedPubMed CentralCAS Google Scholar
Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell94: 481–490. ArticleCASPubMed Google Scholar
Ma C, Ying C, Yuan Z, Song B, Li D, Liu Y et al. (2007). dp5/HRK is a c-Jun target gene and required for apoptosis induced by potassium deprivation in cerebellar granule neurons. J Biol Chem282: 30901–30909. ArticleCASPubMed Google Scholar
Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA et al. (2007a). BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy3: 374–376. ArticleCASPubMed Google Scholar
Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P et al. (2007b). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J26: 2527–2539. ArticleCASPubMedPubMed Central Google Scholar
Marani M, Tenev T, Hancock D, Downward J, Lemoine NR . (2002). Identification of novel isoforms of the BH3 domain protein Bim, which directly activate Bax to trigger apoptosis. Mol Cell Biol22: 3577–3589. ArticleCASPubMedPubMed Central Google Scholar
Marshansky V, Wang X, Bertrand R, Luo H, Duguid W, Chinnadurai G et al. (2001). Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol166: 3130–3142. ArticleCASPubMed Google Scholar
Matsui H, Asou H, Inaba T . (2007). Cytokines direct the regulation of Bim mRNA stability by heat-shock cognate protein 70. Mol Cell25: 99–112. ArticleCASPubMed Google Scholar
McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D . (1999). Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell96: 625–634. ArticleCASPubMed Google Scholar
Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al. (2007). Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood109: 271–280. ArticleCASPubMed Google Scholar
Michalak EM, Villunger A, Adams JM, Strasser A . (2008). In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ15: 1019–1029. ArticleCASPubMed Google Scholar
Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell11: 577–590. ArticleCASPubMed Google Scholar
Mok CL, Gil-Gomez G, Williams O, Coles M, Taga S, Tolaini M et al. (1999). Bad can act as a key regulator of T cell apoptosis and T cell development. J Exp Med189: 575–586. ArticleCASPubMedPubMed Central Google Scholar
Morales AA, Olsson A, Celsing F, Osterborg A, Jondal M, Osorio LM . (2004). Expression and transcriptional regulation of functionally distinct Bmf isoforms in B-chronic lymphocytic leukemia cells. Leukemia18: 41–47. ArticleCASPubMed Google Scholar
Mund T, Gewies A, Schoenfeld N, Bauer MK, Grimm S . (2003). Spike, a novel BH3-only protein, regulates apoptosis at the endoplasmic reticulum. FASEB J17: 696–698. ArticleCASPubMed Google Scholar
Nakajima K, Hirose H, Taniguchi M, Kurashina H, Arasaki K, Nagahama M et al. (2004). Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion. EMBO J23: 3216–3226. ArticleCASPubMedPubMed Central Google Scholar
Nakamura M, Ishida E, Shimada K, Nakase H, Sakaki T, Konishi N . (2005). Frequent HRK inactivation associated with low apoptotic index in secondary glioblastomas. Acta Neuropathol110: 402–410. ArticleCASPubMed Google Scholar
Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell7: 683–694. ArticleCASPubMed Google Scholar
Naresh A, Long W, Vidal GA, Wimley WC, Marrero L, Sartor CI et al. (2006). The ERBB4/HER4 intracellular domain 4ICD is a BH3-only protein promoting apoptosis of breast cancer cells. Cancer Res66: 6412–6420. ArticleCASPubMed Google Scholar
Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR et al. (2007). Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA104: 19512–19517. ArticleCASPubMedPubMed Central Google Scholar
Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS . (2005). The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther4: 443–449. ArticleCASPubMed Google Scholar
Obata T, Toyota M, Satoh A, Sasaki Y, Ogi K, Akino K et al. (2003). Identification of HRK as a target of epigenetic inactivation in colorectal and gastric cancer. Clin Cancer Res9: 6410–6418. CASPubMed Google Scholar
Oberstein A, Jeffrey PD, Shi Y . (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem282: 13123–13132. ArticleCASPubMed Google Scholar
O'Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ et al. (2009). Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood113: 299–305. ArticleCASPubMedPubMed Central Google Scholar
O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S et al. (1998). Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J17: 384–395. ArticleCASPubMedPubMed Central Google Scholar
Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science288: 1053–1058. ArticleCASPubMed Google Scholar
Okami J, Simeone DM, Logsdon CD . (2004). Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Res64: 5338–5346. ArticleCASPubMed Google Scholar
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature435: 677–681. ArticleCASPubMed Google Scholar
Oltvai ZN, Milliman CL, Korsmeyer SJ . (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell74: 609–619. ArticleCASPubMed Google Scholar
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell122: 927–939. ArticleCASPubMed Google Scholar
Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J et al. (2000). Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci9: 2528–2534. ArticleCASPubMedPubMed Central Google Scholar
Pompeia C, Hodge DR, Plass C, Wu YZ, Marquez VE, Kelley JA et al. (2004). Microarray analysis of epigenetic silencing of gene expression in the KAS-6/1 multiple myeloma cell line. Cancer Res64: 3465–3473. ArticleCASPubMed Google Scholar
Ponassi R, Biasotti B, Tomati V, Bruno S, Poggi A, Malacarne D et al. (2008). A novel Bim-BH3-derived Bcl-XL inhibitor: biochemical characterization, in vitro, in vivo and ex-vivo anti-leukemic activity. Cell Cycle7: 3211–3224. ArticleCASPubMed Google Scholar
Porzio O, Massa O, Cunsolo V, Colombo C, Malaponti M, Bertuzzi F et al. (2007). Missense mutations in the TGM2 gene encoding transglutaminase 2 are found in patients with early-onset type 2 diabetes. Mutation in brief no. 982. Online. Hum Mutat28: 1150. ArticleCASPubMed Google Scholar
Puthalakath H, Huang DC, O'Reilly LA, King SM, Strasser A . (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell3: 287–296. ArticleCASPubMed Google Scholar
Puthalakath H, Strasser A . (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ9: 505–512. ArticleCASPubMed Google Scholar
Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE et al. (2001). Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science293: 1829–1832. ArticleCASPubMed Google Scholar
Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V et al. (2005). Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res65: 6282–6293. ArticleCASPubMed Google Scholar
Ranger AM, Zha J, Harada H, Datta SR, Danial NN, Gilmore AP et al. (2003). Bad-deficient mice develop diffuse large B cell lymphoma. Proc Natl Acad Sci USA100: 9324–9329. ArticlePubMedPubMed Central Google Scholar
Rashmi R, Pillai SG, Vijayalingam S, Ryerse J, Chinnadurai G . (2008). BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells. Oncogene27: 1366–1375. ArticleCASPubMed Google Scholar
Real PJ, Sanz C, Gutierrez O, Pipaon C, Zubiaga AM, Fernandez-Luna JL . (2006). Transcriptional activation of the proapoptotic bik gene by E2F proteins in cancer cells. FEBS Lett580: 5905–5909. ArticleCASPubMed Google Scholar
Regula KM, Ens K, Kirshenbaum LA . (2002). Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res91: 226–231. ArticleCASPubMed Google Scholar
Reis PP, Rogatto SR, Kowalski LP, Nishimoto IN, Montovani JC, Corpus G et al. (2002). Quantitative real-time PCR identifies a critical region of deletion on 22q13 related to prognosis in oral cancer. Oncogene21: 6480–6487. ArticleCASPubMed Google Scholar
Renshaw SA, Dempsey CE, Barnes FA, Bagstaff SM, Dower SK, Bingle CD et al. (2004). Three novel Bid proteins generated by alternative splicing of the human Bid gene. J Biol Chem279: 2846–2855. ArticleCASPubMed Google Scholar
Rodolfo C, Mormone E, Matarrese P, Ciccosanti F, Farrace MG, Garofano E et al. (2004). Tissue transglutaminase is a multifunctional BH3-only protein. J Biol Chem279: 54783–54792. ArticleCASPubMed Google Scholar
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al. (2008). Essential role for Nix in autophagic maturation of erythroid cells. Nature454: 232–235. ArticleCASPubMedPubMed Central Google Scholar
Sanz C, Mellstrom B, Link WA, Naranjo JR, Fernandez-Luna JL . (2001). Interleukin 3-dependent activation of DREAM is involved in transcriptional silencing of the apoptotic Hrk gene in hematopoietic progenitor cells. EMBO J20: 2286–2292. ArticleCASPubMedPubMed Central Google Scholar
Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science275: 983–986. ArticleCASPubMed Google Scholar
Scatizzi JC, Bickel E, Hutcheson J, Haines III GK, Perlman H . (2006). Bim deficiency leads to exacerbation and prolongation of joint inflammation in experimental arthritis. Arthritis Rheum54: 3182–3193. ArticleCASPubMed Google Scholar
Scatizzi JC, Hutcheson J, Bickel E, Haines III GK, Perlman H . (2007). Pro-apoptotic Bid is required for the resolution of the effector phase of inflammatory arthritis. Arthritis Res Ther9: R49. ArticlePubMedPubMed CentralCAS Google Scholar
Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC . (1999). Ion channel activity of the BH3 only Bcl-2 family member, BID. J Biol Chem274: 21932–21936. ArticleCASPubMed Google Scholar
Schmitz R, Thomas RK, Harttrampf AC, Wickenhauser C, Schultze JL, Hansmann ML et al. (2006). The major subtypes of human B-cell lymphomas lack mutations in BCL-2 family member BAD. Int J Cancer119: 1738–1740. ArticleCASPubMed Google Scholar
Schmutte C, Tombline G, Rhiem K, Sadoff MM, Schmutzler R, von Deimling A et al. (1999). Characterization of the human Rad51 genomic locus and examination of tumors with 15q14–15 loss of heterozygosity (LOH). Cancer Res59: 4564–4569. CASPubMed Google Scholar
Schumacher B, Schertel C, Wittenburg N, Tuck S, Mitani S, Gartner A et al. (2005). C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ12: 153–161. ArticleCASPubMed Google Scholar
Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al. (2007). NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA104: 19500–19505. ArticleCASPubMedPubMed Central Google Scholar
Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA et al. (2002). A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell2: 55–67. ArticleCASPubMed Google Scholar
Seo YW, Shin JN, Ko KH, Cha JH, Park JY, Lee BR et al. (2003). The molecular mechanism of Noxa-induced mitochondrial dysfunction in p53-mediated cell death. J Biol Chem278: 48292–48299. ArticleCASPubMed Google Scholar
Shaw J, Kirshenbaum LA . (2008). Molecular regulation of autophagy and apoptosis during ischemic and non-ischemic cardiomyopathy. Autophagy4: 427–434. ArticleCASPubMed Google Scholar
Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F, Weidman D et al. (2008). Antagonism of E2F-1 regulated Bnip3 transcription by NF-kappaB is essential for basal cell survival. Proc Natl Acad Sci USA105: 20734–20739. ArticleCASPubMedPubMed Central Google Scholar
Shibue T, Suzuki S, Okamoto H, Yoshida H, Ohba Y, Takaoka A et al. (2006). Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J25: 4952–4962. ArticleCASPubMedPubMed Central Google Scholar
Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A et al. (2003). Integral role of Noxa in p53-mediated apoptotic response. Genes Dev17: 2233–2238. ArticleCASPubMedPubMed Central Google Scholar
Shibue T, Taniguchi T . (2006). BH3-only proteins: integrated control point of apoptosis. Int J Cancer119: 2036–2043. ArticleCASPubMed Google Scholar
Shimizu S, Tsujimoto Y . (2000). Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci USA97: 577–582. ArticleCASPubMedPubMed Central Google Scholar
Shore GC, Viallet J . (2005). Modulating the bcl-2 family of apoptosis suppressors for potential therapeutic benefit in cancer. Hematology Am Soc Hematol Educ Program, 226–230. Article Google Scholar
Sinha S, Colbert CL, Becker N, Wei Y, Levine B . (2008). Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy4: 989–997. ArticleCASPubMed Google Scholar
Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL . (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res61: 6669–6673. CASPubMed Google Scholar
St Onge RP, Udell CM, Casselman R, Davey S . (1999). The human G2 checkpoint control protein hRAD9 is a nuclear phosphoprotein that forms complexes with hRAD1 and hHUS1. Mol Biol Cell10: 1985–1995. ArticleCASPubMed Google Scholar
Strohecker AM, Yehiely F, Chen F, Cryns VL . (2008). Caspase cleavage of HER-2 releases a Bad-like cell death effector. J Biol Chem283: 18269–18282. ArticleCASPubMedPubMed Central Google Scholar
Sturm I, Stephan C, Gillissen B, Siebert R, Janz M, Radetzki S et al. (2006). Loss of the tissue-specific proapoptotic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death Differ13: 619–627. ArticleCASPubMed Google Scholar
Subramanian T, Vijayalingam S, Lomonosova E, Zhao LJ, Chinnadurai G . (2007). Evidence for involvement of BH3-only proapoptotic members in adenovirus-induced apoptosis. J Virol81: 10486–10495. ArticleCASPubMedPubMed Central Google Scholar
Sunters A, Fernandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA et al. (2003). FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem278: 49795–49805. ArticleCASPubMed Google Scholar
Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al. (2005). Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene24: 1348–1358. ArticleCASPubMed Google Scholar
Tan KO, Tan KM, Chan SL, Yee KS, Bevort M, Ang KC et al. (2001). MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J Biol Chem276: 2802–2807. ArticleCASPubMed Google Scholar
Tan TT, Degenhardt K, Nelson DA, Beaudoin B, Nieves-Neira W, Bouillet P et al. (2005). Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell7: 227–238. ArticleCASPubMed Google Scholar
Tang G, Ding K, Nikolovska-Coleska Z, Yang CY, Qiu S, Shangary S et al. (2007). Structure-based design of flavonoid compounds as a new class of small-molecule inhibitors of the anti-apoptotic Bcl-2 proteins. J Med Chem50: 3163–3166. ArticleCASPubMedPubMed Central Google Scholar
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF . (2007). BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol27: 6229–6242. ArticleCASPubMedPubMed Central Google Scholar
Tsai SC, Pasumarthi KB, Pajak L, Franklin M, Patton B, Wang H et al. (2000). Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm. J Biol Chem275: 3239–3246. ArticleCASPubMed Google Scholar
Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J et al. (2001). Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol3: 183–191. ArticleCASPubMed Google Scholar
U M, Miyashita T, Shikama Y, Tadokoro K, Yamada M . (2001). Molecular cloning and characterization of six novel isoforms of human Bim, a member of the proapoptotic Bcl-2 family. FEBS Lett509: 135–141. ArticleCASPubMed Google Scholar
van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE et al. (2006). The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell10: 389–399. ArticleCASPubMedPubMed Central Google Scholar
Vande Velde C, Cizeau J, Dubik D, Alimonti J, Brown T, Israels S et al. (2000). BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol20: 5454–5468. ArticleCASPubMedPubMed Central Google Scholar
Verma S, Zhao LJ, Chinnadurai G . (2001). Phosphorylation of the pro-apoptotic protein BIK: mapping of phosphorylation sites and effect on apoptosis. J Biol Chem276: 4671–4676. ArticleCASPubMed Google Scholar
Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science302: 1036–1038. ArticleCASPubMed Google Scholar
Vogler M, Dinsdale D, Dyer MJ, Cohen GM . (2009). Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ16: 360–367. ArticleCASPubMed Google Scholar
Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA . (2008). Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem283: 21540–21549. ArticleCASPubMedPubMed Central Google Scholar
Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F et al. (1999). Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science284: 339–343. ArticleCASPubMed Google Scholar
Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ . (1996). BID: a novel BH3 domain-only death agonist. Genes Dev10: 2859–2869. ArticleCASPubMed Google Scholar
Wang Z, Malone MH, He H, McColl KS, Distelhorst CW . (2003). Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J Biol Chem278: 23861–23867. ArticleCASPubMed Google Scholar
Wang Z, Sun Y . (2008). Identification and characterization of two splicing variants of human Noxa. Anticancer Res28: 1667–1674. CASPubMed Google Scholar
Weber A, Paschen SA, Heger K, Wilfling F, Frankenberg T, Bauerschmitt H et al. (2007). BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins. J Cell Biol177: 625–636. ArticleCASPubMedPubMed Central Google Scholar
Wick W, Petersen I, Schmutzler RK, Wolfarth B, Lenartz D, Bierhoff E et al. (1996). Evidence for a novel tumor suppressor gene on chromosome 15 associated with progression to a metastatic stage in breast cancer. Oncogene12: 973–978. CASPubMed Google Scholar
Wolff S, Erster S, Palacios G, Moll UM . (2008). p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Res18: 733–744. ArticleCASPubMed Google Scholar
Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol9: 405–414. ArticleCASPubMedPubMed Central Google Scholar
Xie X, Xia W, Li Z, Kuo HP, Liu Y, Ding Q et al. (2007). Targeted expression of BikDD eradicates pancreatic tumors in noninvasive imaging models. Cancer Cell12: 52–65. ArticleCASPubMed Google Scholar
Yamashita M, Kuwahara M, Suzuki A, Hirahara K, Shinnaksu R, Hosokawa H et al. (2008). Bmi1 regulates memory CD4 T cell survival via repression of the Noxa gene. J Exp Med205: 1109–1120. ArticleCASPubMedPubMed Central Google Scholar
Yan N, Gu L, Kokel D, Chai J, Li W, Han A et al. (2004). Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell15: 999–1006. ArticleCASPubMed Google Scholar
Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell80: 285–291. ArticleCASPubMed Google Scholar
Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B et al. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature400: 886–891. ArticleCASPubMed Google Scholar
Yoshida K, Komatsu K, Wang HG, Kufe D . (2002). c-Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage. Mol Cell Biol22: 3292–3300. ArticleCASPubMedPubMed Central Google Scholar
You H, Pellegrini M, Tsuchihara K, Yamamoto K, Hacker G, Erlacher M et al. (2006). FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J Exp Med203: 1657–1663. ArticleCASPubMedPubMed Central Google Scholar
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol8: 1124–1132. ArticleCASPubMed Google Scholar
Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L . (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA100: 1931–1936. ArticleCASPubMedPubMed Central Google Scholar
Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell7: 673–682. ArticleCASPubMed Google Scholar
Yussman MG, Toyokawa T, Odley A, Lynch RA, Wu G, Colbert MC et al. (2002). Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med8: 725–730. ArticleCASPubMed Google Scholar
Zeng X, Overmeyer JH, Maltese WA . (2006). Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci119: 259–270. ArticleCASPubMed Google Scholar
Zha H, Aime-Sempe C, Sato T, Reed JC . (1996a). Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem271: 7440–7444. ArticleCASPubMed Google Scholar
Zha J, Harada H, Osipov K, Jockel J, Waksman G, Korsmeyer SJ . (1997). BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J Biol Chem272: 24101–24104. ArticleCASPubMed Google Scholar
Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . (1996b). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL-X(L). Cell87: 619–628. ArticleCASPubMed Google Scholar
Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ . (2000). Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science290: 1761–1765. ArticleCASPubMed Google Scholar
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem283: 10892–10903. ArticleCASPubMedPubMed Central Google Scholar
Zhang H, Heim J, Meyhack B . (1999). Novel BNIP1 variants and their interaction with BCL2 family members. FEBS Lett448: 23–27. ArticleCASPubMed Google Scholar
Zhong Q, Gao W, Du F, Wang X . (2005). Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell121: 1085–1095. ArticleCASPubMed Google Scholar
Zhou XM, Liu Y, Payne G, Lutz RJ, Chittenden T . (2000). Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155. J Biol Chem275: 25046–25051. ArticleCASPubMed Google Scholar
Zhu H, Zhang L, Dong F, Guo W, Wu S, Teraishi F et al. (2005). Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene24: 4993–4999. ArticleCASPubMedPubMed Central Google Scholar
Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ . (2005). A role for proapoptotic BID in the DNA-damage response. Cell122: 579–591. ArticleCASPubMed Google Scholar
Zinkel SS, Ong CC, Ferguson DO, Iwasaki H, Akashi K, Bronson RT et al. (2003). Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev17: 229–239. ArticleCASPubMedPubMed Central Google Scholar