Harnessing the immune response to treat cancer (original) (raw)
Ahmadzadeh M, Rosenberg SA . (2005). TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol174: 5215–5223. CASPubMed Central Google Scholar
Albert ML, Sauter B, Bhardwaj N . (1998). Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature392: 86–89. CAS Google Scholar
Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N et al. (2006). Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res12: 878–887. CAS Google Scholar
Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR et al. (2005). CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol174: 2591–2601. CASPubMed Central Google Scholar
Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R et al. (2007a). The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev220: 47–59. CAS Google Scholar
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. (2007b). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med13: 1050–1059. ArticleCAS Google Scholar
Bannard O, Kraman M, Fearon DT . (2009). Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science323: 505–509. CASPubMed Central Google Scholar
Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR . (1998). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393: 478–480. CASPubMed Central Google Scholar
Beyer M, Karbach J, Mallmann MR, Zander T, Eggle D, Classen S et al. (2009). Cancer vaccine enhanced, non-tumor-reactive CD8(+) T cells exhibit a distinct molecular program associated with ‘division arrest anergy’. Cancer Res69: 4346–4354. CAS Google Scholar
Beyer M, Schultze JL . (2006). Regulatory T cells in cancer. Blood108: 804–811. ArticleCAS Google Scholar
Bioley G, Dousset C, Yeh A, Dupont B, Bhardwaj N, Mears G et al. (2009a). Vaccination with recombinant NY-ESO-1 protein elicits immunodominant HLA-DR52b-restricted CD4+ T cell responses with a conserved T cell receptor repertoire. Clin Cancer Res15: 4467–4474. CAS Google Scholar
Bioley G, Guillaume P, Luescher I, Bhardwaj N, Mears G, Old L et al. (2009b). Vaccination with a recombinant protein encoding the tumor-specific antigen NY-ESO-1 elicits an A2/157-165-specific CTL repertoire structurally distinct and of reduced tumor reactivity than that elicited by spontaneous immune responses to NY-ESO-1-expressing tumors. J Immunother32: 161–168. CAS Google Scholar
Bioley G, Guillaume P, Luescher I, Yeh A, Dupont B, Bhardwaj N et al. (2009c). HLA class I—associated immunodominance affects CTL responsiveness to an ESO recombinant protein tumor antigen vaccine. Clin Cancer Res15: 299–306. CAS Google Scholar
Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T et al. (2004). PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res64: 1140–1145. CAS Google Scholar
Broomfield S, Currie A, van der Most RG, Brown M, van Bruggen I, Robinson BW et al. (2005). Partial, but not complete, tumor-debulking surgery promotes protective antitumor memory when combined with chemotherapy and adjuvant immunotherapy. Cancer Res65: 7580–7584. CAS Google Scholar
Broomfield SA, van der Most RG, Prosser AC, Mahendran S, Tovey MG, Smyth MJ et al. (2009). Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J Immunol182: 5217–5224. CAS Google Scholar
Brossart P, Bevan MJ . (1997). Presentation of exogenous protein antigens on major histocompatibility complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines. Blood90: 1594–1599. CASPubMed Central Google Scholar
Bundell CS, Jackaman C, Suhrbier A, Robinson BW, Nelson DJ . (2006). Functional endogenous cytotoxic T lymphocytes are generated to multiple antigens co-expressed by progressing tumors; after intra-tumoral IL-2 therapy these effector cells eradicate established tumors. Cancer Immunol Immunother55: 933–947. CAS Google Scholar
Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C . (2007). Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science316: 612–616. CAS Google Scholar
Burgdorf S, Kurts C . (2008). Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol20: 89–95. CAS Google Scholar
Burgdorf S, Scholz C, Kautz A, Tampe R, Kurts C . (2008). Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat Immunol9: 558–566. CAS Google Scholar
Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN et al. (2000). Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med191: 1957–1964. CASPubMed Central Google Scholar
Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A . (1997). Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature388: 782–787. CAS Google Scholar
Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . (1996). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med184: 747–752. CAS Google Scholar
Chaput N, De Botton S, Obeid M, Apetoh L, Ghiringhelli F, Panaretakis T et al. (2007). Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J Mol Med85: 1069–1076. CAS Google Scholar
Chen X, Doffek K, Sugg SL, Shilyansky J . (2004). Phosphatidylserine regulates the maturation of human dendritic cells. J Immunol173: 2985–2994. CAS Google Scholar
Cloosen S, Arnold J, Thio M, Bos GM, Kyewski B, Germeraad WT . (2007). Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: implications for self-tolerance and tumor therapy. Cancer Res67: 3919–3926. CAS Google Scholar
Costantino CM, Baecher-Allan CM, Hafler DA . (2008). Human regulatory T cells and autoimmunity. Eur J Immunol38: 921–924. CASPubMed Central Google Scholar
Currie AJ, van der Most RG, Broomfield SA, Prosser AC, Tovey MG, Robinson BW . (2008). Targeting the effector site with IFN-alphabeta-inducing TLR ligands reactivates tumor-resident CD8 T cell responses to eradicate established solid tumors. J Immunol180: 1535–1544. CAS Google Scholar
Darrasse-Jeze G, Bergot AS, Durgeau A, Billiard F, Salomon BL, Cohen JL et al. (2009). Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. J Clin Invest119: 2648–2662. CASPubMed Central Google Scholar
Deeths MJ, Kedl RM, Mescher MF . (1999). CD8+ T cells become nonresponsive (anergic) following activation in the presence of costimulation. J Immunol163: 102–110. CAS Google Scholar
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med8: 793–800. CASPubMed Central Google Scholar
Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298: 850–854. CASPubMed Central Google Scholar
Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA et al. (2002). T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest110: 185–192. CASPubMed Central Google Scholar
Edinger AL, Thompson CB . (2004). Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol16: 663–669. CAS Google Scholar
Elliott RL, Blobe GC . (2005). Role of transforming growth factor beta in human cancer. J Clin Oncol23: 2078–2093. CAS Google Scholar
Feng H, Zeng Y, Graner MW, Katsanis E . (2002). Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood100: 4108–4115. CAS Google Scholar
Fife BT, Guleria I, Gubbels Bupp M, Eagar TN, Tang Q, Bour-Jordan H et al. (2006). Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med203: 2737–2747. CASPubMed Central Google Scholar
Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . (2005). Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity22: 329–341. CAS Google Scholar
Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U et al. (2009). High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer126: 2635–2643. Google Scholar
Gajewski TF, Meng Y, Harlin H . (2006). Immune suppression in the tumor microenvironment. J Immunother29: 233–240. CAS Google Scholar
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med15: 1170–1178. CAS Google Scholar
Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C et al. (2004). CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol34: 336–344. CAS Google Scholar
Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother56: 641–648. CAS Google Scholar
Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al. (2005). Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med202: 919–929. CASPubMed Central Google Scholar
Gilboa E . (2001). The risk of autoimmunity associated with tumor immunotherapy. Nat Immunol2: 789–792. CAS Google Scholar
Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S . (2002). Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol20: 621–667. CAS Google Scholar
Hamilton DH, Bretscher PA . (2008). Different immune correlates associated with tumor progression and regression: implications for prevention and treatment of cancer. Cancer Immunol Immunother57: 1125–1136. CAS Google Scholar
Hipp MM, Hilf N, Walter S, Werth D, Brauer KM, Radsak MP et al. (2008). Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood111: 5610–5620. CAS Google Scholar
Hodi FS . (2007). Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res13: 5238–5242. CAS Google Scholar
Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A et al. (2003). Phagosomes are competent organelles for antigen cross-presentation. Nature425: 402–406. CAS Google Scholar
Hu HM, Poehlein CH, Urba WJ, Fox BA . (2002). Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res62: 3914–3919. CAS Google Scholar
Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M et al. (2004). Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med199: 303–313. CASPubMed Central Google Scholar
Hwang ML, Lukens JR, Bullock TN . (2007). Cognate memory CD4+ T cells generated with dendritic cell priming influence the expansion, trafficking, and differentiation of secondary CD8+ T cells and enhance tumor control. J Immunol179: 5829–5838. CAS Google Scholar
Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D et al. (2003). IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol171: 5051–5063. CAS Google Scholar
Jackaman C, Lew AM, Zhan Y, Allan JE, Koloska B, Graham PT et al. (2008). Deliberately provoking local inflammation drives tumors to become their own protective vaccine site. Int Immunol20: 1467–1479. CAS Google Scholar
Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD et al. (2005). CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature434: 88–93. CASPubMed Central Google Scholar
Javid B, MacAry PA, Lehner PJ . (2007). Structure and function: heat shock proteins and adaptive immunity. J Immunol179: 2035–2040. CAS Google Scholar
Kaminski JM, Shinohara E, Summers JB, Niermann KJ, Morimoto A, Brousal J . (2005). The controversial abscopal effect. Cancer Treat Rev31: 159–172. CAS Google Scholar
Kennedy R, Celis E . (2006). T helper lymphocytes rescue CTL from activation-induced cell death. J Immunol177: 2862–2872. CASPubMed Central Google Scholar
Kennedy R, Celis E . (2008). Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev222: 129–144. CAS Google Scholar
Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP et al. (2009). Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med361: 1838–1847. CAS Google Scholar
Kim S, Buchlis G, Fridlender ZG, Sun J, Kapoor V, Cheng G et al. (2008). Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res68: 10247–10256. CASPubMed Central Google Scholar
Kim S, Elkon KB, Ma X . (2004). Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells. Immunity21: 643–653. CAS Google Scholar
Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res15: 2148–2157. CAS Google Scholar
Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S et al. (2009). Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood114: 1141–1149. CASPubMed Central Google Scholar
Lake RA, Robinson BW . (2005). Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer5: 397–405. CASPubMed Central Google Scholar
Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E et al. (2008). Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol181: 6955–6963. CASPubMed Central Google Scholar
Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D et al. (2005). The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA102: 16013–16018. CASPubMed Central Google Scholar
Li H, Ambade A, Re F . (2009). Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol183: 1528–1532. CAS Google Scholar
Li M, Davey GM, Sutherland RM, Kurts C, Lew AM, Hirst C et al. (2001). Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol166: 6099–6103. CAS Google Scholar
Linard B, Bezieau S, Benlalam H, Labarriere N, Guilloux Y, Diez E et al. (2002). A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol168: 4802–4808. CAS Google Scholar
Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P . (2009). Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer9: 445–452. Google Scholar
Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H . (2005). Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood105: 2862–2868. CAS Google Scholar
Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S et al. (2009). T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity31: 787–798. CASPubMed Central Google Scholar
Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L et al. (2009). Chemotherapy induces ATP release from tumor cells. Cell Cycle8: 3723–3728. CAS Google Scholar
Marzo AL, Fitzpatrick DR, Robinson BW, Scott B . (1997). Antisense oligonucleotides specific for transforming growth factor beta2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res57: 3200–3207. CAS Google Scholar
Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW et al. (2000). Tumor-specific CD4+ T cells have a major ‘post-licensing’ role in CTL mediated anti-tumor immunity. J Immunol165: 6047–6055. CAS Google Scholar
Marzo AL, Lake RA, Lo D, Sherman L, McWilliam A, Nelson D et al. (1999). Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol162: 5838–5845. CAS Google Scholar
Mattarollo SR, Kenna T, Nieda M, Nicol AJ . (2006). Chemotherapy pretreatment sensitizes solid tumor-derived cell lines to V alpha 24+ NKT cell-mediated cytotoxicity. Int J Cancer119: 1630–1637. CAS Google Scholar
Matzinger P . (2002). The danger model: a renewed sense of self. Science296: 301–305. CAS Google Scholar
Mescher MF, Popescu FE, Gerner M, Hammerbeck CD, Curtsinger JM . (2007). Activation-induced non-responsiveness (anergy) limits CD8 T cell responses to tumors. Semin Cancer Biol17: 299–308. CASPubMed Central Google Scholar
Nelson D, Bundell C, Robinson B . (2000). in vivo cross-presentation of a soluble protein antigen: kinetics, distribution, and generation of effector CTL recognizing dominant and subdominant epitopes. J Immunol165: 6123–6132. CAS Google Scholar
Nelson DJ, Mukherjee S, Bundell C, Fisher S, van Hagen D, Robinson B . (2001). Tumor progression despite efficient tumor antigen cross-presentation and effective ‘arming’ of tumor antigen-specific CTL. J Immunol166: 5557–5566. CAS Google Scholar
Nishikawa H, Kato T, Tanida K, Hiasa A, Tawara I, Ikeda H et al. (2003). CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA100: 10902–10906. CAS Google Scholar
Nishimura T, Nakui M, Sato M, Iwakabe K, Kitamura H, Sekimoto M et al. (2000). The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother Pharmacol46 (Suppl): S52–S61. CAS Google Scholar
Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ et al. (2003a). Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells. J Immunol170: 4905–4913. CAS Google Scholar
Nowak AK, Lake RA, Robinson BW . (2006). Combined chemoimmunotherapy of solid tumours: improving vaccines? Adv Drug Deliv Rev58: 975–990. CAS Google Scholar
Nowak AK, Robinson BW, Lake RA . (2003b). Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res63: 4490–4496. CAS Google Scholar
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med13: 54–61. CASPubMed Central Google Scholar
Ohlen C, Kalos M, Cheng LE, Shur AC, Hong DJ, Carson BD et al. (2002). CD8(+) T cell tolerance to a tumor-associated antigen is maintained at the level of expansion rather than effector function. J Exp Med195: 1407–1418. CASPubMed Central Google Scholar
Okada H, Mak TW . (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer4: 592–603. CASPubMed Central Google Scholar
Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E . (1999). Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res59: 3128–3133. CASPubMed Central Google Scholar
Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M et al. (2008). The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ15: 1499–1509. CAS Google Scholar
Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD et al. (2009a). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature463: 191–196. PubMed Central Google Scholar
Pleasance ED, Stephens PJ, O′Meara S, McBride DJ, Meynert A, Jones D et al. (2009b). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature463: 184–190. PubMed Central Google Scholar
Poitrasson-Riviere M, Bienvenu B, Le Campion A, Becourt C, Martin B, Lucas B . (2008). Regulatory CD4+ T cells are crucial for preventing CD8+ T cell-mediated autoimmunity. J Immunol180: 7294–7304. CAS Google Scholar
Rad AN, Pollara G, Sohaib SM, Chiang C, Chain BM, Katz DR . (2003). The differential influence of allogeneic tumor cell death via DNA damage on dendritic cell maturation and antigen presentation. Cancer Res63: 5143–5150. CAS Google Scholar
Rech AJ, Vonderheide RH . (2009). Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann NY Acad Sci1174: 99–106. CAS Google Scholar
Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK et al. (2006). Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med203: 1259–1271. CASPubMed Central Google Scholar
Restifo NP . (2000). Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Curr Opin Immunol12: 597–603. CASPubMed Central Google Scholar
Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA . (1996). Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst88: 100–108. CASPubMed Central Google Scholar
Robinson BW, Lake RA, Nelson DJ, Scott BA, Marzo AL . (1999). Cross-presentation of tumour antigens: evaluation of threshold, duration, distribution and regulation. Immunol Cell Biol77: 552–558. CAS Google Scholar
Robinson BW, Scott BM, Lake RA, Stumbles PA, Nelson DJ, Fisher S et al. (2001). Lack of ignorance to tumor antigens: evaluation using nominal antigen transfection and T-cell receptor transgenic lymphocytes in Lyons–Parish analysis—implications for tumor tolerance. Clin Cancer Res7: 811s–8817s. CAS Google Scholar
Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL et al. (2005). Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol175: 6169–6176. CAS Google Scholar
Rovere P, Sabbadini MG, Vallinoto C, Fascio U, Zimmermann VS, Bondanza A et al. (1999). Delayed clearance of apoptotic lymphoma cells allows cross-presentation of intracellular antigens by mature dendritic cells. J Leukoc Biol66: 345–349. CAS Google Scholar
Rudge G, Barrett SP, Scott B, van Driel IR . (2007). Infiltration of a mesothelioma by IFN-gamma-producing cells and tumor rejection after depletion of regulatory T cells. J Immunol178: 4089–4096. CAS Google Scholar
Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D et al. (2009). Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol27: 186–192. Google Scholar
Sarween N, Chodos A, Raykundalia C, Khan M, Abbas AK, Walker LS . (2004). CD4+CD25+ cells controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. J Immunol173: 2942–2951. CAS Google Scholar
Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC et al. (2006). NOX2 controls phagosomal pH to regulate antigen processing during cross-presentation by dendritic cells. Cell126: 205–218. CAS Google Scholar
Schietinger A, Philip M, Schreiber H . (2008). Specificity in cancer immunotherapy. Semin Immunol20: 276–285. CASPubMed Central Google Scholar
Shi Y, Evans JE, Rock KL . (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature425: 516–521. CAS Google Scholar
Sinai P, Berg RE, Haynie JM, Egorin MJ, Ilaria Jr RL, Forman J . (2007). Imatinib mesylate inhibits antigen-specific memory CD8 T cell responses in vivo. J Immunol178: 2028–2037. CAS Google Scholar
Skoberne M, Beignon AS, Bhardwaj N . (2004). Danger signals: a time and space continuum. Trends Mol Med10: 251–257. CAS Google Scholar
Srivastava N, Srivastava PK . (2009). Modeling the repertoire of true tumor-specific MHC I epitopes in a human tumor. PLoS One4: e6094. PubMed Central Google Scholar
Stumbles PA, Himbeck R, Frelinger JA, Collins EJ, Lake RA, Robinson BW . (2004). Cutting edge: tumor-specific CTL are constitutively cross-armed in draining lymph nodes and transiently disseminate to mediate tumor regression following systemic CD40 activation. J Immunol173: 5923–5928. CAS Google Scholar
Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM . (2005). Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res11: 6713–6721. CAS Google Scholar
Tanchot C, Guillaume S, Delon J, Bourgeois C, Franzke A, Sarukhan A et al. (1998). Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity8: 581–590. CAS Google Scholar
Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene29: 482–491. CASPubMed Central Google Scholar
Tomlinson I, Sasieni P, Bodmer W . (2002). How many mutations in a cancer? Am J Pathol160: 755–758. PubMed Central Google Scholar
Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med9: 1269–1274. CASPubMed Central Google Scholar
van der Most RG, Currie A, Robinson BW, Lake RA . (2006). Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res66: 601–604. Google Scholar
van der Most RG, Currie AJ, Cleaver AL, Salmons J, Nowak AK, Mahendran S et al. (2009a). Cyclophosphamide chemotherapy sensitizes tumor cells to TRAIL-dependent CD8 T cell-mediated immune attack resulting in suppression of tumor growth. PLoS One4: e6982. PubMed Central Google Scholar
van der Most RG, Currie AJ, Mahendran S, Prosser A, Darabi A, Robinson BW et al. (2009b). Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother58: 1219–1228. CAS Google Scholar
Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A et al. (2010). Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med16: 98–105. CAS Google Scholar
von Boehmer H . (2005). Mechanisms of suppression by suppressor T cells. Nat Immunol6: 338–344. CASPubMed Central Google Scholar
Wang HY, Peng G, Guo Z, Shevach EM, Wang RF . (2005). Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol174: 2661–2670. CASPubMed Central Google Scholar
Watson NF, Ramage JM, Madjd Z, Spendlove I, Ellis IO, Scholefield JH et al. (2006). Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer118: 6–10. CAS Google Scholar
Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature450: 893–898. CASPubMed Central Google Scholar
Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F et al. (2010). Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci USA107: 11895–11899. CAS Google Scholar
Williams MA, Tyznik AJ, Bevan MJ . (2006). Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature441: 890–893. CASPubMed Central Google Scholar
Wolchok JD, Saenger Y . (2008). The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist13 (Suppl 4): 2 9. CAS Google Scholar
Wortzel RD, Urban JL, Philipps C, Fitch FW, Schreiber H . (1983). Independent immunodominant and immunorecessive tumor-specific antigens on a malignant tumor: antigenic dissection with cytolytic T cell clones. J Immunol130: 2461–2466. CAS Google Scholar
Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E et al. (2008). CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA105: 20410–20415. CAS Google Scholar
Zheng X, Koropatnick J, Li M, Zhang X, Ling F, Ren X et al. (2006). Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. J Immunol177: 5639–5646. CAS Google Scholar
Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G . (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol8: 59–73. CAS Google Scholar
Zou W, Chen L . (2008). Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev. Immunol8: 467–477. CAS Google Scholar