The expression of genes in top obesity-associated loci is enriched in insula and substantia nigra brain regions involved in addiction and reward (original) (raw)

References

  1. Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50:26–41.
    Article CAS Google Scholar
  2. Ndiaye FK, Ortalli A, Canouil M, Huyvaert M, Salazar-Cardozo C, Lecoeur C, et al. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion. Mol Metab. 2017;6:459–70.
    Article CAS Google Scholar
  3. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.
    Article CAS Google Scholar
  4. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.
    Article CAS Google Scholar
  5. Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45:501–12.
    Article CAS Google Scholar
  6. Wen W, Cho Y-S, Zheng W, Dorajoo R, Kato N, Qi L, et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet. 2012;44:307–11.
    Article CAS Google Scholar
  7. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44:526–31.
    Article CAS Google Scholar
  8. Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S, et al. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet. 2013;45:513–17.
    Article CAS Google Scholar
  9. Monda KL, Chen GK, Taylor KC, Palmer C, Edwards TL, Lange LA, et al. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat Genet. 2013;45:690–96.
    Article CAS Google Scholar
  10. Jiao H, Arner P, Hoffstedt J, Brodin D, Dubern B, Czernichow S, et al. Genome wide association study identifies KCNMA1 contributing to human obesity. BMC Med Genom. 2011;4:51.
    Article CAS Google Scholar
  11. Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ESH, et al. First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS ONE. 2015;10:e0119333.
    Article Google Scholar
  12. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–49.
    Article CAS Google Scholar
  13. Vaxillaire M, Yengo L, Lobbens S, Rocheleau G, Eury E, Lantieri O, et al. Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia. 2014;57:1601–10.
    Article CAS Google Scholar
  14. Blundell JE, Gillett A. Control of food intake in the obese. Obes Res. 2001;9 Suppl 4:263S–270S.
    Article CAS Google Scholar
  15. Flint AJ, Gearhardt AN, Corbin WR, Brownell KD, Field AE, Rimm EB. Food-addiction scale measurement in 2 cohorts of middle-aged and older women. Am J Clin Nutr. 2014;99:578–86.
    Article CAS Google Scholar
  16. Hebebrand J, Albayrak Ö, Adan R, Antel J, Dieguez C, de Jong J, et al. ‘Eating addiction’, rather than ‘food addiction’, better captures addictive-like eating behavior. Neurosci Biobehav Rev. 2014;47:295–306.
    Article Google Scholar
  17. Naqvi NH, Bechara A. The hidden island of addiction: the insula. Trends Neurosci. 2009;32:56–67.
    Article CAS Google Scholar
  18. Zaghloul KA, Blanco JA, Weidemann CT, McGill K, Jaggi JL, Baltuch GH, et al. Human substantia nigra neurons encode unexpected financial rewards. Science. 2009;323:1496–99.
    Article CAS Google Scholar
  19. Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways: from neurogenesis to circuit assembly. Am J Pathol. 2016;186:478–88.
    Article CAS Google Scholar
  20. Micali N, Field AE, Treasure JL, Evans DM. Are obesity risk genes associated with binge eating in adolescence? Obesity. 2015;23:1729–36.
    Article Google Scholar
  21. Castellini G, Franzago M, Bagnoli S, Lelli L, Balsamo M, Mancini M, et al. Fat mass and obesity-associated gene (FTO) is associated to eating disorders susceptibility and moderates the expression of psychopathological traits. PLoS ONE. 2017;12:e0173560.
    Article Google Scholar
  22. Corwin RLW, Wojnicki FHE, Zimmer DJ, Babbs RK, McGrath LE, Olivos DR, et al. Binge-type eating disrupts dopaminergic and GABAergic signaling in the prefrontal cortex and ventral tegmental area. Obesity. 2016;24:2118–25.
    Article CAS Google Scholar
  23. Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.
    Article CAS Google Scholar

Download references

Acknowledgements

We thank Endocells for providing the pancreatic beta-cell line, EndoC-βH1. The GTEx Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the GTEx Portal on 23 Novermber 2018. This work was supported by grants from the French National Research Agency (ANR-10-LABX-46 [European Genomics Institute for Diabetes] and ANR-10-EQPX-07-01 [LIGAN-PM], to PF), from the European Research Council (ERC GEPIDIAB—294785, to PF; ERC Reg-Seq—715575, to AB), from FEDER (to PF), and from the ‘_Région Nord Pas-de-Calais_’ (to PF and to FKN). AB was supported by Inserm. The D.E.S.I.R. study has been funded by Inserm contracts with Caisse nationale de l’assurance maladie des travailleurs salariés, Lilly, Novartis Pharma, and Sanofi-Aventis; Inserm (Réseaux en Santé Publique, Interactions entre les déterminants de la santé, Cohortes Santé TGIR 2008); the Association Diabète Risque Vasculaire; the Fédération Française de Cardiologie; La Fondation de France; the Association de Langue Française pour l’Etude du Diabète et des Maladies Métaboliques/Société Francophone de Diabétologie; the Office national interprofessionnel des vins; Ardix Medical; Bayer Diagnostics; Becton Dickinson; Cardionics; Merck Santé; Novo Nordisk; Pierre Fabre; Roche; and Topcon. The D.E.S.I.R. study group includes: Inserm U1018: B. Balkau, P. Ducimetière, and E. Eschwège; Inserm U367: F. Alhenc-Gelas; CHU D’Angers: Y Gallois and A. Girault; Center de Recherche des Cordeliers, Inserm U1138, Bichat Hospital: F. Fumeron, M. Marre, and R. Roussel; CHU de Rennes: F. Bonnet; CNRS UMR8199, Lille: A. Bonnefond and P. Froguel; Centers d’Examens de Santé: Alençon, Angers, Blois, Caen, Chateauroux, Chartres, Cholet, Le Mans, Orléans, and Tours; Institute de Recherche Médecine Générale: J. Cogneau; General practitioners of the region; Institute Inter-Regional pour la Santé: C. Born, E. Caces, M. Cailleau, O Lantieri, J.G. Moreau, F. Rakotozafy, J. Tichet, and S. Vol.

Author information

Authors and Affiliations

  1. CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
    Fatou K. Ndiaye, Marlène Huyvaert, Ana Ortalli, Mickaël Canouil, Cécile Lecoeur, Marie Verbanck, Stéphane Lobbens, Amna Khamis, Philippe Froguel & Amélie Bonnefond
  2. Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
    Lorella Marselli & Piero Marchetti
  3. Inserm U1190, EGID, CHU Lille, University of Lille, Lille, France
    Julie Kerr-Conte & François Pattou
  4. Department of Diabetology, Endocrinology and Nutrition, DHU-FIRE, HUPNVS, AP-HP, Paris, France
    Michel Marre & Ronan Roussel
  5. Paris Diderot-Sorbonne Paris Cité University, Paris, France
    Michel Marre & Ronan Roussel
  6. Centre de Recherche des Cordeliers, Inserm U1138, Paris, France
    Michel Marre & Ronan Roussel
  7. Inserm U1018, Center for Research in Epidemiology and Population Health, Villejuif, France
    Beverley Balkau
  8. University Paris-Saclay, Villejuif, France
    Beverley Balkau
  9. University Paris-Sud, Villejuif, France
    Beverley Balkau
  10. Department of Genomics of Common Disease, Imperial College of London, London, UK
    Philippe Froguel & Amélie Bonnefond

Authors

  1. Fatou K. Ndiaye
  2. Marlène Huyvaert
  3. Ana Ortalli
  4. Mickaël Canouil
  5. Cécile Lecoeur
  6. Marie Verbanck
  7. Stéphane Lobbens
  8. Amna Khamis
  9. Lorella Marselli
  10. Piero Marchetti
  11. Julie Kerr-Conte
  12. François Pattou
  13. Michel Marre
  14. Ronan Roussel
  15. Beverley Balkau
  16. Philippe Froguel
  17. Amélie Bonnefond

Corresponding authors

Correspondence toPhilippe Froguel or Amélie Bonnefond.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

About this article

Cite this article

Ndiaye, F.K., Huyvaert, M., Ortalli, A. et al. The expression of genes in top obesity-associated loci is enriched in insula and substantia nigra brain regions involved in addiction and reward.Int J Obes 44, 539–543 (2020). https://doi.org/10.1038/s41366-019-0428-7

Download citation