- Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).
Article CAS PubMed Google Scholar
- Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).
Article PubMed PubMed Central Google Scholar
- Wong, H. L. et al. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. 12, 2619–2639 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Liu, Y. et al. Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J. 12, 1021–1031 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).
Article CAS PubMed Google Scholar
- Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Sun, J. et al. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME Commun. 1, 30 (2021).
Article Google Scholar
- Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).
Article PubMed PubMed Central Google Scholar
- Farag, I. F., Zhao, R. & Biddle, J. F. “Sifarchaeota,” a novel Asgard phylum from Costa Rican sediment capable of polysaccharide degradation and anaerobic methylotrophy. Appl. Environ. Microbiol. 87, e02584–20 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, J. W. et al. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J. 15, 1826–1843 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Cai, M. et al. Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci. China Life Sci. 63, 886–897 (2020).
Article CAS PubMed Google Scholar
- Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).
Article CAS PubMed Google Scholar
- Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Lopez-Garcia, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).
Article CAS PubMed Google Scholar
- Da Cunha, V., Gaia, M., Nasir, A. & Forterre, P. Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet. 14, e1007215 (2018).
Article PubMed PubMed Central Google Scholar
- Da Cunha, V., Gaia, M., Gadelle, D., Nasir, A. & Forterre, P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 13, e1006810 (2017).
Article PubMed PubMed Central Google Scholar
- Baquero, D. P. et al. Structure and assembly of archaeal viruses. Adv. Virus Res. 108, 127–164 (2020).
Article CAS PubMed Google Scholar
- Prangishvili, D. et al. The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15, 724–739 (2017).
Article CAS PubMed Google Scholar
- Dellas, N., Snyder, J. C., Bolduc, B. & Young, M. J. Archaeal viruses: diversity, replication, and structure. Annu. Rev. Virol. 1, 399–426 (2014).
Article PubMed Google Scholar
- Makarova, K. S. et al. Unprecedented diversity of unique CRISPR-Cas-related systems and Cas1 homologs in Asgard archaea. CRISPR J. 3, 156–163 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Coclet, C. & Roux, S. Global overview and major challenges of host prediction methods for uncultivated phages. Curr. Opin. Virol. 49, 117–126 (2021).
Article CAS PubMed Google Scholar
- Nunoura, T. et al. Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan. Environ. Microbiol. 18, 1889–1906 (2016).
Article CAS PubMed Google Scholar
- Glass, J. B. et al. Microbial metabolism and adaptations in Atribacteria-dominated methane hydrate sediments. Environ. Microbiol. 23, 4646–4660 (2021).
Article CAS PubMed Google Scholar
- Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).
Article CAS PubMed Google Scholar
- Iranzo, J., Krupovic, M. & Koonin, E. V. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio 7, e00978–16 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84, e00061–19 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Wang, Z. et al. Structure of the marine siphovirus TW1: evolution of capsid-stabilizing proteins and tail spikes. Structure 26, 238–248 (2018).
Article CAS PubMed Google Scholar
- Hendrix, R. W. Tail length determination in double-stranded DNA bacteriophages. Curr. Top. Microbiol. Immunol. 136, 21–29 (1988).
CAS PubMed Google Scholar
- Mahony, J. et al. Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Sci. Rep. 6, 36667 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4, e06416 (2015).
Article PubMed PubMed Central Google Scholar
- Krupovic, M., Forterre, P. & Bamford, D. H. Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J. Mol. Biol. 397, 144–160 (2010).
Article CAS PubMed Google Scholar
- Krupovic, M., Cvirkaite-Krupovic, V., Iranzo, J., Prangishvili, D. & Koonin, E. V. Viruses of archaea: structural, functional, environmental and evolutionary genomics. Virus Res. 244, 181–193 (2018).
Article CAS PubMed Google Scholar
- Liu, Y. et al. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol. 19, e3001442 (2021).
Article PubMed PubMed Central Google Scholar
- Gardner, A. F., Bell, S. D., White, M. F., Prangishvili, D. & Krupovic, M. Protein-protein interactions leading to recruitment of the host DNA sliding clamp by the hyperthermophilic Sulfolobus islandicus rod-shaped virus 2. J. Virol. 88, 7105–7108 (2014).
Article PubMed PubMed Central Google Scholar
- Gussow, A. B. et al. Machine-learning approach expands the repertoire of anti-CRISPR protein families. Nat. Commun. 11, 3784 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Li, Y. & Bondy-Denomy, J. Anti-CRISPRs go viral: the infection biology of CRISPR-Cas inhibitors. Cell Host Microbe 29, 704–714 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Krupovic, M. & Bamford, D. H. Virus evolution: how far does the double beta-barrel viral lineage extend? Nat. Rev. Microbiol. 6, 941–948 (2008).
Article CAS PubMed Google Scholar
- Hong, C. et al. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus. PLoS Biol. 12, e1002024 (2014).
Article PubMed PubMed Central Google Scholar
- Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).
Article CAS PubMed Google Scholar
- Yutin, N., Bäckström, D., Ettema, T. J. G., Krupovic, M. & Koonin, E. V. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol. J. 15, 67 (2018).
Article PubMed PubMed Central Google Scholar
- Abrescia, N. G. et al. Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Mol. Cell 31, 749–761 (2008).
Article CAS PubMed Google Scholar
- Oksanen, H. M., ICTV Report Consortium. ICTV Virus Taxonomy Profile: Corticoviridae. J. Gen. Virol. 98, 888–889 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Krupovic, M. & Bamford, D. H. Putative prophages related to lytic tailless marine dsDNA phage PM2 are widespread in the genomes of aquatic bacteria. BMC Genomics 8, 236 (2007).
Article PubMed PubMed Central Google Scholar
- Kazlauskas, D., Varsani, A., Koonin, E. V. & Krupovic, M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun. 10, 3425 (2019).
Article PubMed PubMed Central Google Scholar
- Takahashi, T. S. et al. Expanding the type IIB DNA topoisomerase family: identification of new topoisomerase and topoisomerase-like proteins in mobile genetic elements. NAR Genom. Bioinform. 2, lqz021 (2020).
Article PubMed Google Scholar
- Krupovic, M., Quemin, E. R., Bamford, D. H., Forterre, P. & Prangishvili, D. Unification of the globally distributed spindle-shaped viruses of the Archaea. J. Virol. 88, 2354–2358 (2014).
Article PubMed PubMed Central Google Scholar
- Bath, C., Cukalac, T., Porter, K. & Dyall-Smith, M. L. His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350, 228–239 (2006).
Article CAS PubMed Google Scholar
- Wang, F. et al. Spindle-shaped archaeal viruses evolved from rod-shaped ancestors to package a larger genome. Cell 185, 1297–1307.e11 (2022).
Article CAS PubMed Google Scholar
- Hong, C. et al. Lemon-shaped halo archaeal virus His1 with uniform tail but variable capsid structure. Proc. Natl Acad. Sci. USA 112, 2449–2454 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Quemin, E. R. et al. Sulfolobus spindle-shaped virus 1 contains glycosylated capsid proteins, a cellular chromatin protein, and host-derived lipids. J. Virol. 89, 11681–11691 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Straus, S. K. & Bo, H. E. Filamentous bacteriophage proteins and assembly. Subcell. Biochem. 88, 261–279 (2018).
Article CAS PubMed Google Scholar
- Kim, J. G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc. Natl Acad. Sci. USA 116, 15645–15650 (2019).
Article CAS PubMed PubMed Central Google Scholar
- Quemin, E. R. et al. Eukaryotic-like virus budding in Archaea. mBio 7, e01439–16 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat. Commun. 12, 4642 (2020).
Article Google Scholar
- Bamford, D. H. et al. ICTV Virus Taxonomy Profile: Pleolipoviridae. J. Gen. Virol. 98, 2916–2917 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Wu, F. et al. Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nat. Microbiol. 7, 200–212 (2022).
Article CAS PubMed PubMed Central Google Scholar
- Summer, E. J., Gill, J. J., Upton, C., Gonzalez, C. F. & Young, R. Role of phages in the pathogenesis of Burkholderia, or ‘Where are the toxin genes in Burkholderia phages?’. Curr. Opin. Microbiol. 10, 410–417 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Krupovic, M., Dolja, V. V. & Koonin, E. V. The LUCA and its complex virome. Nat. Rev. Microbiol. 18, 661–670 (2020).
Article CAS PubMed Google Scholar
- Cahill, J. & Young, R. Phage lysis: multiple genes for multiple barriers. Adv. Virus Res. 103, 33–70 (2019).
Article CAS PubMed Google Scholar
- Snyder, J. C. & Young, M. J. Lytic viruses infecting organisms from the three domains of life. Biochem. Soc. Trans. 41, 309–313 (2013).
Article CAS PubMed Google Scholar
- Krupovic, M., Daugelavicius, R. & Bamford, D. H. A novel lysis system in PM2, a lipid-containing marine double-stranded DNA bacteriophage. Mol. Microbiol. 64, 1635–1648 (2007).
Article CAS PubMed Google Scholar
- Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).
Article PubMed PubMed Central Google Scholar
- Tamarit, D. et al. A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01122-y (2022).
- Rambo, I. M., de Anda, V., Langwig, M. V. & Baker, B. J. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01150-8 (2022).
- Kaneko, M. et al. Insights into the methanogenic population and potential in subsurface marine sediments based on coenzyme F430 as a function-specific compound analysis. JACS Au 1, 1743–1751 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Hirai, M. et al. Library construction from subnanogram DNA for pelagic sea water and deep-sea sediments. Microbes Environ. 32, 336–343 (2017).
Article PubMed PubMed Central Google Scholar
- Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).
Article CAS PubMed Google Scholar
- Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).
Article CAS PubMed PubMed Central Google Scholar
- Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
PubMed Central Google Scholar
- Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
Article PubMed PubMed Central Google Scholar
- Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Article CAS PubMed Google Scholar
- Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Antipov, D., Raiko, M., Lapidus, A. & Pevzner, P. A. Metaviral SPAdes: assembly of viruses from metagenomic data. Bioinformatics 36, 4126–4129 (2020).
Article CAS PubMed Google Scholar
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Article CAS PubMed Google Scholar
- Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Article CAS PubMed Google Scholar
- Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).
Article PubMed PubMed Central Google Scholar
- Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).
Article CAS PubMed Google Scholar
- Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
Article Google Scholar
- Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Bland, C. et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8, 209 (2007).
Article PubMed PubMed Central Google Scholar
- Biswas, A., Staals, R. H., Morales, S. E., Fineran, P. C. & Brown, C. M. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17, 356 (2016).
Article PubMed PubMed Central Google Scholar
- Tareen, A. & Kinney, J. B. Logomaker: beautiful sequence logos in Python. Bioinformatics 36, 2272–2274 (2020).
Article CAS PubMed Google Scholar
- Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).
Article CAS PubMed Google Scholar
- Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527–541 (2019).
Article CAS PubMed Google Scholar
- Zhang, R. et al. SpacePHARER: sensitive identification of phages from CRISPR spacers in prokaryotic hosts. Bioinformatics 37, 3364–3366 (2021).
Article CAS PubMed Central Google Scholar
- Dion, M. B. et al. Streamlining CRISPR spacer-based bacterial host predictions to decipher the viral dark matter. Nucleic Acids Res. 49, 3127–3138 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Galiez, C., Siebert, M., Enault, F., Vincent, J. & Soding, J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Zielezinski, A., Deorowicz, S. & Gudys, A. PHIST: fast and accurate prediction of prokaryotic hosts from metagenomic viral sequences. Bioinformatics 38, 1447–1449 (2021).
Article PubMed Central Google Scholar