Koonin, E. V. Origin of eukaryotes from within Archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Phil. Trans. R. Soc. Lond. B370, 20140333 (2015) ArticleCAS Google Scholar
Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. Lond. B370, 20140330 (2015) ArticleCAS Google Scholar
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA105, 20356–20361 (2008) ArticleADSCASPubMedPubMed Central Google Scholar
Guy, L. & Ettema, T. J. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol.19, 580–587 (2011) ArticleCASPubMed Google Scholar
Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA112, 6670–6675 (2015) ArticleADSCASPubMedPubMed Central Google Scholar
McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol.12, 449–455 (2014) ArticleCASPubMed Google Scholar
Williams, T. A., Foster, P. G., Nye, T. M., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. R. Soc. Lond. B279, 4870–4879 (2012) CAS Google Scholar
Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature504, 231–236 (2013) ArticleADSCASPubMed Google Scholar
Klinger, C. M., Spang, A., Dacks, J. B. & Ettema, T. J. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol.33, 1528–1541 (2016) ArticleCASPubMed Google Scholar
Dey, G., Thattai, M. & Baum, B. On the archaeal origins of eukaryotes and the challenges of inferring phenotype from genotype. Trends Cell Biol.26, 476–485 (2016) ArticleCASPubMedPubMed Central Google Scholar
Archibald, J. M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol.25, R911–R921 (2015) ArticleCASPubMed Google Scholar
Martin, W. F., Neukirchen, S., Zimorski, V., Gould, S. B. & Sousa, F. L. Energy for two: new archaeal lineages and the origin of mitochondria. BioEssays38, 850–856 (2016) ArticlePubMed Google Scholar
Villanueva, L., Schouten, S. & Damsté, J. S. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the ‘lipid divide’. Environ. Microbiol. (2016)
Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol.1, 16034 (2016) ArticleCASPubMed Google Scholar
Mariotti, M. et al. Lokiarchaeota marks the transition between the archaeal and eukaryotic selenocysteine encoding systems. Mol. Biol. Evol.33, 2441–2453 (2016) ArticleCASPubMedPubMed Central Google Scholar
Seitz, K. W., Lazar, C. S., Hinrichs, K. U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J.10, 1696–1705 (2016) ArticleCASPubMedPubMed Central Google Scholar
Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet.6, 361–375 (2005) ArticleCASPubMed Google Scholar
Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol.21, 1095–1109 (2004) ArticleCASPubMed Google Scholar
Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature458, 445–452 (2009) ArticleADSCASPubMed Google Scholar
Tahirov, T. H., Makarova, K. S., Rogozin, I. B., Pavlov, Y. I. & Koonin, E. V. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct4, 11 (2009) ArticlePubMedPubMed CentralCAS Google Scholar
Sacher, M., Kim, Y. G., Lavie, A., Oh, B. H. & Segev, N. The TRAPP complex: insights into its architecture and function. Traffic9, 2032–2042 (2008) ArticleCASPubMedPubMed Central Google Scholar
Podar, M., Wall, M. A., Makarova, K. S. & Koonin, E. V. The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system. Biol. Direct3, 2 (2008) ArticlePubMedPubMed CentralCAS Google Scholar
Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell77, 895–907 (1994) ArticleCASPubMed Google Scholar
Lee, M. C., Miller, E. A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol.20, 87–123 (2004) ArticleCASPubMed Google Scholar
Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol.24, 525–534 (2016) ArticleCASPubMed Google Scholar
Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol.2, e380 (2004) ArticlePubMedPubMed CentralCAS Google Scholar
Field, M. C., Sali, A. & Rout, M. P. Evolution: on a bender–BARs, ESCRTs, COPs, and finally getting your coat. J. Cell Biol.193, 963–972 (2011) ArticleCASPubMedPubMed Central Google Scholar
Schlacht, A. & Dacks, J. B. Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol. Evol.7, 1098–1109 (2015) ArticleCASPubMedPubMed Central Google Scholar
Dacks, J. B. & Field, M. C. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci.120, 2977–2985 (2007) ArticleCASPubMed Google Scholar
Ku, C. et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature524, 427–432 (2015) ArticleADSCASPubMed Google Scholar
Koonin, E. V. & Yutin, N. The dispersed archaeal eukaryome and the complex archaeal ancestor of eukaryotes. Cold Spring Harb. Perspect. Biol.6, a016188 (2014) ArticlePubMedPubMed CentralCAS Google Scholar
Shively, J. M. in Complex Intracellular Structures in Prokaryotes (ed. Jessup M. Shively ) 3–22 (Springer Berlin Heidelberg, 2006)
Küper, U., Meyer, C., Müller, V., Rachel, R. & Huber, H. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic archaeon Ignicoccus hospitalis. Proc. Natl Acad. Sci. USA107, 3152–3156 (2010) ArticleADSPubMedPubMed Central Google Scholar
Klingl, A. S-layer and cytoplasmic membrane—exceptions from the typical archaeal cell wall with a focus on double membranes. Front. Microbiol.5, 624 (2014) ArticlePubMedPubMed Central Google Scholar
Martijn, J. & Ettema, T. J. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans.41, 451–457 (2013) ArticleCASPubMed Google Scholar
Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol.6, a015990 (2014) ArticlePubMedPubMed CentralCAS Google Scholar
Saw, J. H. et al. Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Phil. Trans. R. Soc. Lond. B370, 20140328 (2015) Article Google Scholar
Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol.1, 16002 (2016) ArticleCASPubMed Google Scholar
Castelle, C. J. et al. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol.25, 690–701 (2015) ArticleCASPubMed Google Scholar
Hirayama, H. et al. Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. Appl. Environ. Microbiol.73, 7642–7656 (2007) ArticleCASPubMedPubMed CentralADS Google Scholar
Lever, M. A. et al. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Front. Microbiol.6, 476 (2015) ArticlePubMedPubMed Central Google Scholar
Peng, Y., Leung, H. C., Yiu, S. M. & Chin, F. Y. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics28, 1420–1428 (2012) ArticleCASPubMed Google Scholar
Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol.13, R122 (2012) ArticlePubMedPubMed CentralCAS Google Scholar
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods11, 1144–1146 (2014) ArticleCASPubMed Google Scholar
Brady, A. & Salzberg, S. L. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat. Methods6, 673–676 (2009) ArticleCASPubMedPubMed Central Google Scholar
Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature523, 208–211 (2015) ArticleADSCASPubMed Google Scholar
Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol.31, 533–538 (2013) ArticleCASPubMed Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res.25, 1043–1055 (2015) ArticleCASPubMedPubMed Central Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119 (2010) ArticlePubMedPubMed CentralCAS Google Scholar
Markowitz, V. M. et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res.40, D115–D122 (2012) ArticleCASPubMed Google Scholar
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res.25, 955–964 (1997) ArticleCASPubMedPubMed Central Google Scholar
Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res.43, D222–D226 (2015) ArticleCASPubMed Google Scholar
Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life5, 818–840 (2015) ArticleCASPubMedPubMed Central Google Scholar
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res.44 (D1), D279–D285 (2016) ArticleCASPubMed Google Scholar
Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res.43, D257–D260 (2015) ArticleCASPubMed Google Scholar
Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res.33, W244–W228 (2005) ArticlePubMedPubMed CentralCAS Google Scholar
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols10, 845–858 (2015) ArticleCASPubMed Google Scholar
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004) ArticleCASPubMed Google Scholar
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313 (2014) ArticleCASPubMedPubMed Central Google Scholar
Guy, L., Saw, J. H. & Ettema, T. J. The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb. Perspect. Biol.6, a016022 (2014) ArticlePubMedPubMed Central Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013) ArticleCASPubMedPubMed Central Google Scholar
Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol.10, 210 (2010) ArticlePubMedPubMed CentralCAS Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009) ArticlePubMedPubMed CentralCAS Google Scholar
Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol.62, 611–615 (2013) ArticleCASPubMed Google Scholar
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015) ArticleCASPubMed Google Scholar
Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol.30, 1188–1195 (2013) ArticleCASPubMedPubMed Central Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol.59, 307–321 (2010) ArticleCASPubMed Google Scholar
Viklund, J., Ettema, T. J. & Andersson, S. G. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol. Biol. Evol.29, 599–615 (2012) ArticleCASPubMed Google Scholar
Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol.24, 2139–2150 (2007) ArticleCASPubMed Google Scholar
Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics26, 1569–1571 (2010) ArticleCASPubMed Google Scholar
Makarova, K. S., Krupovic, M. & Koonin, E. V. Evolution of replicative DNA polymerases in Archaea and their contributions to the eukaryotic replication machinery. Front. Microbiol.5, 354 (2014) ArticlePubMedPubMed Central Google Scholar