Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types (original) (raw)

References

  1. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
    Article CAS Google Scholar
  2. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  3. GTEx Consortium. The Genotype–Tissue Expression (GTEx) pilot analysis: multi-tissue gene regulation in humans. Science 348, 648–660 (2015).
    Article PubMed Central CAS Google Scholar
  4. Ernst, J. et al. Mapping and analysis of chromatin-state dynamics in nine human cell types. Nature 473, 43–49 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  5. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).
    Article CAS PubMed Google Scholar
  6. Farh, K. K.-H. et al. Genetic and epigenetic fine-mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).
    Article CAS PubMed Google Scholar
  7. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  8. Li, Y. & Kellis, M. Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases. Nucleic Acids Res. 44, e144 (2016).
    Article PubMed PubMed Central CAS Google Scholar
  9. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  10. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  11. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).
    Article PubMed PubMed Central CAS Google Scholar
  12. Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  13. Ongen, H. et al. Estimating the causal tissues for complex traits and diseases. Nat. Genet. 49, 1676-1683 (2016).
  14. Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 496–506 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  15. Slowikowski, K., Hu, X. & Raychaudhuri, S. SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci. Bioinformatics 30, 2496–2497 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  16. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  17. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
    Article CAS PubMed Google Scholar
  18. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene-dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).
    Article CAS PubMed Google Scholar
  19. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  20. Akbarian, S. et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  21. Heng, T. S. P. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).
    Article CAS PubMed Google Scholar
  22. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
    Article CAS PubMed Google Scholar
  23. Sudlow, C. et al. UK Biobank: an open-access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
    Article PubMed PubMed Central Google Scholar
  24. Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Preprint at bioRxiv https://doi.org/10.1101/048991 (2016).
  25. Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  26. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).
    Article PubMed Central CAS Google Scholar
  27. International League Against Epilepsy Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 13, 893–903 (2014).
    Article CAS Google Scholar
  28. Woo, D. et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 94, 511–521 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  29. Traylor, M. et al. Genetic risk factors for ischemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 11, 951–962 (2012).
    Article PubMed PubMed Central Google Scholar
  30. Patsopoulos, N. A. et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol. 70, 897–912 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  31. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46, 989–993 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  32. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
    Article CAS PubMed Central Google Scholar
  33. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  34. Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  35. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  36. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  37. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  38. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).
    Article CAS PubMed Google Scholar
  39. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  40. Bradfield, J. P. et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 7, e1002293 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  41. Dubois, P. C. A. et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  42. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  43. Cordell, H. J. et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat. Commun. 6, 8019 (2015).
    Article CAS PubMed Google Scholar
  44. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  45. Tfelt-Hansen, P. C. & Koehler, P. J. One hundred years of migraine research: major clinical and scientific observations from 1910 to 2010. Headache 51, 752–778 (2011).
    Article PubMed Google Scholar
  46. Hanford, L. C., Nazarov, A., Hall, G. B. & Sassi, R. B. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord. 18, 4–18 (2016).
    Article PubMed Google Scholar
  47. Callicott, J. H. et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb. Cortex 10, 1078–1092 (2000).
    Article CAS PubMed Google Scholar
  48. Medic, N. et al. Increased body mass index is associated with specific regional alterations in brain structure. Int. J. Obes. 40, 1177–1182 (2016).
    Article CAS Google Scholar
  49. Maleki, N. et al. Migraine attacks the basal ganglia. Mol. Pain 7, 71 (2011).
    Article PubMed PubMed Central Google Scholar
  50. Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).
    Article CAS PubMed PubMed Central Google Scholar
  51. Sakai, T. et al. Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder. Neuropathology 28, 143–150 (2008).
    Article PubMed Google Scholar
  52. Benes, F. M. & Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27 (2001).
    Article CAS PubMed Google Scholar
  53. Dhirapong, A. et al. B cell depletion therapy exacerbates murine primary biliary cirrhosis. Hepatology 53, 527–535 (2011).
    Article CAS PubMed Google Scholar
  54. Zhang, J. et al. Ongoing activation of autoantigen-specific B cells in primary biliary cirrhosis. Hepatology 60, 1708–1716 (2014).
    Article CAS PubMed Google Scholar
  55. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  56. Huang, K. L. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci. 20, 1052–1061 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  57. Lloyd, C. M. & Hessel, E. M. Functions of T cells in asthma: more than just TH2 cells. Nat. Rev. Immunol. 10, 838–848 (2010).
    Article CAS PubMed Google Scholar
  58. Müller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. & Gay, S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1, 102–110 (2005).
    Article PubMed CAS Google Scholar
  59. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).
    Article CAS PubMed Google Scholar
  60. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Annu. Rev. Immunol. 23, 683–747 (2005).
    Article CAS PubMed Google Scholar
  61. Barbosa, I. G., Machado-Vieira, R., Soares, J. C. & Teixeira, A. L. The immunology of bipolar disorder. Neuroimmunomodulation 21, 117–122 (2014).
    Article CAS PubMed Google Scholar
  62. Steiner, J. et al. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. Eur. Arch. Psychiatry Clin. Neurosci. 260, 509–518 (2010).
    Article PubMed Google Scholar
  63. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  64. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  65. Gazal, S. et al. Linkage-disequilibrium-dependent architecture of human complex traits reveals action of negative selection. Nat. Genet. 49, 1421–1427 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  66. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  67. Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet. 99, 139–153 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  68. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  69. Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).
    Article CAS PubMed Google Scholar
  70. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed model association for biobank-scale data sets. Preprint at bioRxiv https://doi.org/10.1101/194944 (2017).
  71. Backenroth, D. et al. Tissue-specific functional effect prediction of genetic variation and applications to complex trait genetics. Preprint at bioRxiv https://doi.org/10.1101/069229 (2016).
  72. Wilens, T. E., Biederman, J. & Spencer, T. J. Attention deficit or hyperactivity disorder across the lifespan. Annu. Rev. Med. 53, 113–131 (2002).
    Article CAS PubMed Google Scholar
  73. Davis, L. K. et al. Partitioning the heritability of Tourette syndrome and obsessive–compulsive disorder reveals differences in genetic architecture. PLoS Genet. 9, e1003864 (2013).
    Article PubMed PubMed Central CAS Google Scholar
  74. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
    Article PubMed PubMed Central CAS Google Scholar
  75. Gjoneska, E. et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature 518, 365–369 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  76. Gagliano, S. A. et al. Genomics implicates adaptive and innate immunity in Alzheimer’s and Parkinson’s diseases. Ann. Clin. Transl. Neurol 3, 924–933 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  77. Rege, S. & Hodgkinson, S. J. Immune dysregulation and autoimmunity in bipolar disorder: synthesis of the evidence and its clinical application. Aust. N. Z. J. Psychiatry 47, 1136–1151 (2013).
    Article PubMed Google Scholar
  78. Elamin, I., Edwards, M. J. & Martino, D. Immune dysfunction in Tourette syndrome. Behav. Neurol. 27, 23–32 (2013).
    Article PubMed PubMed Central Google Scholar
  79. Jin, W., Millar, J. S., Broedl, U., Glick, J. M. & Rader, D. J. Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 111, 357–362 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  80. Broedl, U. C. et al. Endothelial lipase promotes the catabolism of ApoB-containing lipoproteins. Circ. Res. 94, 1554–1561 (2004).
    Article CAS PubMed Google Scholar
  81. Feingold, K. R. & Grunfeld, C. The role of HDL in innate immunity. J. Lipid Res. 52, 1–3 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  82. Lo, J. C. et al. Lymphotoxin-β-receptor-dependent control of lipid homeostasis. Science 316, 285–288 (2007).
    Article CAS PubMed Google Scholar
  83. Harrison, D. G. The immune system in hypertension. Trans. Am. Clin. Climatol. Assoc. 125, 130–138 (2014).
    PubMed PubMed Central Google Scholar
  84. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).
    Article CAS PubMed Google Scholar
  85. Zlotnikov-Klionsky, Y. et al. Perforin-positive dendritic cells exhibit an immunoregulatory role in metabolic syndrome and autoimmunity. Immunity 43, 776–787 (2015).
    Article CAS PubMed Google Scholar
  86. Mancuso, N. et al. Integrating gene expression with summary-association statistics to identify genes associated with 30 complex traits. Am. J. Hum. Genet. 100, 473–487 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  87. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).
    Article CAS PubMed PubMed Central Google Scholar

Download references

Acknowledgements

We are thankful to R. Herbst, E. Hodis, F. Hormozdiari, M. Kanai, T. Pers, S. Riesenfeld, J. Ulirsch and A. Veres for helpful comments. This research was conducted using the UK Biobank Resource (application number: 16549). This research was funded by NIH grants R01 MH107649 (H.K.F., S.G., B.M.N., A.L.P.), R01 MH109978 (A.G., A.L.P.), U01 CA194393 (H.K.F., A.L.P.) and U01 HG009379 (S.R., A.L.P.). H.K.F. was also supported by the Fannie and John Hertz Foundation and by Eric and Wendy Schmidt. Data on neuron types were generated as part of the PsychENCODE Consortium, supported by: U01MH103392 (S. Akbarian, Icahn School of Medicine at Mount Sinai; P. Sklar, Icahn School of Medicine at Mount Sinai), U01MH103365 (F. Vaccarino, Yale University; M. Gerstein, Yale University; S. Weissman, Yale University), U01MH103346 (P. Farnham, University of Southern California; J. A. Knowles, University of Southern California), U01MH103340 (C. Liu, SUNY Upstate Medical University; K. White, University of Chicago), U01MH103339 (N. Sestan, Yale University; M. State, University of California, San Francisco), R21MH109956 (A. Jaffe, Lieber Institute for Brain Development), R21MH105881 (D. Pinto, Icahn School of Medicine at Mount Sinai), R21MH105853 (A. Jaffe, Lieber Institute for Brain Development; D. Weinberger, Lieber Institute for Brain Development), R21MH103877 (S. Dracheva, Icahn School of Medicine at Mount Sinai; S. Akbarian, Icahn School of Medicine at Mount Sinai), R21MH102791 (A. Jaffe, Lieber Institute for Brain Development), R01MH111721 (F. Goes, Johns Hopkins University; T. Hyde, Lieber Institute for Brain Development), R01MH110928 (M. State, University of California, San Francisco; S. Sanders, University of California, San Francisco; J. Willsey, University of California, San Francisco), R01MH110927 (D. Geschwind, University of California, Los Angeles), R01MH110926 (N. Sestan, Yale University), R01MH110921 (P. Sklar, Icahn School of Medicine at Mount Sinai), R01MH110920 (C. Liu, SUNY Upstate Medical University), R01MH110905 (K. White, University of Chicago), R01MH109715 (D. Pinto, Icahn School of Medicine at Mount Sinai), R01MH109677 (P. Roussos, Icahn School of Medicine at Mount Sinai), R01MH105898, (P. Zandi, Johns Hopkins University; T. M. Hyde, Lieber Institute for Brain Development), R01MH094714, (D. Geschwind, University of California, Los Angeles), P50MH106934, (N. Sestan, Yale University), R01MH105472 (G. Crawford, Duke University; P. Sullivan, University of North Carolina).

Author information

Author notes

  1. A list of members and affiliations appears in the Supplementary Note.

Authors and Affiliations

  1. Broad Institute of MIT and Harvard, Cambridge, MA, USA
    Hilary K. Finucane, Verneri Anttila, Kamil Slowikowski, Andrea Byrnes, Caleb Lareau, Noam Shoresh, Giulio Genovese, Jason D. Buenrostro, Bradley E. Bernstein, Soumya Raychaudhuri, Steven McCarroll, Benjamin M. Neale & Alkes L. Price
  2. Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
    Hilary K. Finucane
  3. Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
    Hilary K. Finucane, Alexander Gusev, Steven Gazal, Po-Ru Loh, Samuela Pollack & Alkes L. Price
  4. Department of Computer Science, Harvard University, Cambridge, MA, USA
    Yakir A. Reshef
  5. Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
    Verneri Anttila, Andrea Byrnes & Benjamin M. Neale
  6. Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA
    Kamil Slowikowski
  7. Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
    Kamil Slowikowski & Soumya Raychaudhuri
  8. Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
    Caleb Lareau
  9. Department of Genetics, Harvard Medical School, Boston, MA, USA
    Arpiar Saunders, Evan Macosko & Steven McCarroll
  10. Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
    John R. B. Perry
  11. Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
    Jason D. Buenrostro
  12. Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
    Bradley E. Bernstein
  13. Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
    Soumya Raychaudhuri
  14. Partners Center for Personalized Genetic Medicine, Boston, MA, USA
    Soumya Raychaudhuri
  15. Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
    Soumya Raychaudhuri

Authors

  1. Hilary K. Finucane
  2. Yakir A. Reshef
  3. Verneri Anttila
  4. Kamil Slowikowski
  5. Alexander Gusev
  6. Andrea Byrnes
  7. Steven Gazal
  8. Po-Ru Loh
  9. Caleb Lareau
  10. Noam Shoresh
  11. Giulio Genovese
  12. Arpiar Saunders
  13. Evan Macosko
  14. Samuela Pollack
  15. John R. B. Perry
  16. Jason D. Buenrostro
  17. Bradley E. Bernstein
  18. Soumya Raychaudhuri
  19. Steven McCarroll
  20. Benjamin M. Neale
  21. Alkes L. Price

Consortia

The Brainstorm Consortium

Contributions

H.K.F. and A.L.P. designed the study; H.K.F., Y.A.R., K.S. and S.P. analyzed data; H.K.F. and A.L.P. wrote the manuscript with assistance from Y.A.R., V.A., K.S., A.G., A.B., S.G., P.-R.L., C.L., N.S., G.G., A.S., E.M., S.P., J.R.B.P., J.D.B., B.E.B., S.R., S.M. and B.M.N.

Corresponding authors

Correspondence toHilary K. Finucane or Alkes L. Price.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

About this article

Cite this article

Finucane, H.K., Reshef, Y.A., Anttila, V. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types.Nat Genet 50, 621–629 (2018). https://doi.org/10.1038/s41588-018-0081-4

Download citation