The VHL tumor suppressor and HIF: insights from genetic studies in mice (original) (raw)
Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM et al. von Hippel–Lindau disease. Lancet 2003; 361: 2059–2067. CASPubMed Google Scholar
Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994; 7: 85–90. CASPubMed Google Scholar
Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML et al. Identification of the von Hippel–Lindau disease tumor suppressor gene [see comments]. Science 1993; 260: 1317–1320. CASPubMed Google Scholar
Iliopoulos O, Levy AP, Jiang C, Kaelin Jr WG, Goldberg MA . Negative regulation of hypoxia-inducible genes by the von Hippel–Lindau protein. Proc Natl Acad Sci USA 1996; 93: 10595–10599. CASPubMedPubMed Central Google Scholar
Gnarra JR, Zhou S, Merrill MJ, Wagner JR, Krumm A, Papavassiliou E et al. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci USA 1996; 93: 10589–10594. CASPubMedPubMed Central Google Scholar
Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D . Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel–Lindau tumor suppressor protein. Cancer Res 1996; 56: 2299–2301. CASPubMed Google Scholar
Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis [see comments]. Nature 1999; 399: 271–275. ArticleCASPubMed Google Scholar
Kibel A, Iliopoulos O, DeCaprio JA, Kaelin Jr WG . Binding of the von Hippel–Lindau tumor suppressor protein to Elongin B and C [see comments]. Science 1995; 269: 1444–1446. CASPubMed Google Scholar
Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM et al. The von Hippel–Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 1997; 94: 2156–2161. CASPubMedPubMed Central Google Scholar
Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase [see comments]. Science 1999; 284: 657–661. CASPubMed Google Scholar
Stebbins CE, Kaelin Jr WG, Pavletich NP . Structure of the VHL-ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 1999; 284: 455–461. CASPubMed Google Scholar
Feldman DE, Thulasiraman V, Ferreyra RG, Frydman J . Formation of the VHL–elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell 1999; 4: 1051–1061. CASPubMed Google Scholar
Iwai K, Yamanaka K, Kamura T, Minato N, Conaway RC, Conaway JW et al. Identification of the von Hippel–lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc Natl Acad Sci USA 1999; 96: 12436–12441. CASPubMedPubMed Central Google Scholar
Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W . The von Hippel–Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 1999; 13: 1822–1833. CASPubMedPubMed Central Google Scholar
Salceda S, Caro J . Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin–proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272: 22642–22647. CASPubMed Google Scholar
Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J Biol Chem 2000; 275: 25733–25741. CASPubMed Google Scholar
Tanimoto K, Makino Y, Pereira T, Poellinger L . Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel–Lindau tumor suppressor protein. EMBO J 2000; 19: 4298–4309. CASPubMedPubMed Central Google Scholar
Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2000; 2: 423–427. CASPubMed Google Scholar
Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW . Activation of HIF1alpha ubiquitination by a reconstituted von Hippel–Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 2000; 97: 10430–10435. CASPubMedPubMed Central Google Scholar
Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S et al. Multiple splice variants of the human HIF-3alpha locus are targets of the VHL E3 ubiquitin ligase complex. J Biol Chem 2003; 278: 1032–1040. Google Scholar
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472. CASPubMed Google Scholar
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468. CASPubMed Google Scholar
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et al. C.elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43–54. CASPubMed Google Scholar
Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 2002; 417: 975–978. CASPubMed Google Scholar
Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ . Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 2001; 20: 5197–5206. CASPubMedPubMed Central Google Scholar
Yu F, White SB, Zhao Q, Lee FS . HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 2001; 98: 9630–9635. CASPubMedPubMed Central Google Scholar
Bruick RK, McKnight SL . A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294: 1337–1340. CASPubMed Google Scholar
Wenger RH, Stiehl DP, Camenisch G . Integration of oxygen signaling at the consensus HRE. Sci STKE 2005; 2005: re12. PubMed Google Scholar
Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC . Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 2003; 23: 9361–9374. CASPubMedPubMed Central Google Scholar
Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M et al. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J 2004; 18: 1462–1464. CASPubMed Google Scholar
Rankin EB, Higgins DF, Walisser JA, Johnson RS, Bradfield CA, Haase VH . Inactivation of the arylhydrocarbon receptor nuclear translocator (Arnt) suppresses von Hippel–Lindau disease-associated vascular tumors in mice. Mol Cell Biol 2005; 25: 3163–3172. CASPubMedPubMed Central Google Scholar
Rankin EB, Biju MP, Liu Q, Unger TL, Rha J, Johnson RS et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 2007; 117: 1068–1077. CASPubMedPubMed Central Google Scholar
Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC . Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci USA 2007; 104: 2301–2306. CASPubMedPubMed Central Google Scholar
An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM . Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 1998; 392: 405–408. CASPubMed Google Scholar
Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000; 14: 34–44. CASPubMedPubMed Central Google Scholar
Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 2004; 23: 1949–1956. CASPubMedPubMed Central Google Scholar
Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9: 617–628. CASPubMed Google Scholar
Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML . Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002; 295: 858–861. CASPubMed Google Scholar
Mahon PC, Hirota K, Semenza GL . FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001; 15: 2675–2686. CASPubMedPubMed Central Google Scholar
Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK . FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 2002; 16: 1466–1471. CASPubMedPubMed Central Google Scholar
Stolze IP, Tian YM, Appelhoff RJ, Turley H, Wykoff CC, Gleadle JM et al. Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (HIF) in regulating HIF transcriptional target genes. J Biol Chem 2004; 279: 42719–42725. CASPubMed Google Scholar
Kurban G, Duplan E, Ramlal N, Hudon V, Sado Y, Ninomiya Y et al. Collagen matrix assembly is driven by the interaction of von Hippel–Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene 2007 13 August [Epub ahead of print].
Kurban G, Hudon V, Duplan E, Ohh M, Pause A . Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. Cancer Res 2006; 66: 1313–1319. CASPubMed Google Scholar
Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN et al. The von Hippel–Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1998; 1: 959–968. CASPubMed Google Scholar
Koochekpour S, Jeffers M, Wang PH, Gong C, Taylor GA, Roessler LM et al. The von Hippel–Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 1999; 19: 5902–5912. CASPubMedPubMed Central Google Scholar
Davidowitz EJ, Schoenfeld AR, Burk RD . VHL induces renal cell differentiation and growth arrest through integration of cell–cell and cell–extracellular matrix signaling. Mol Cell Biol 2001; 21: 865–874. CASPubMedPubMed Central Google Scholar
Bishop T, Lau KW, Epstein AC, Kim SK, Jiang M, O'Rourke D et al. Genetic analysis of pathways regulated by the von Hippel–Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2004; 2: e289. PubMedPubMed Central Google Scholar
Calzada MJ, Esteban MA, Feijoo-Cuaresma M, Castellanos MC, Naranjo-Suarez S, Temes E et al. von Hippel–Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Cancer Res 2006; 66: 1553–1560. CASPubMed Google Scholar
Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X et al. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell 2007; 28: 15–27. PubMedPubMed Central Google Scholar
Peruzzi B, Athauda G, Bottaro DP . The von Hippel–Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 2006; 103: 14531–14536. CASPubMedPubMed Central Google Scholar
Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD . p53 stabilization and transactivation by a von Hippel–Lindau protein. Mol Cell 2006; 22: 395–405. CASPubMed Google Scholar
Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W . Regulation of microtubule stability by the von Hippel–Lindau tumour suppressor protein pVHL. Nat Cell Biol 2003; 5: 64–70. CASPubMed Google Scholar
Thoma CR, Frew IJ, Hoerner CR, Montani M, Moch H, Krek W . pVHL and GSK3beta are components of a primary cilium-maintenance signalling network. Nat Cell Biol 2007; 9: 588–595. CASPubMed Google Scholar
Schermer B, Ghenoiu C, Bartram M, Muller RU, Kotsis F, Hohne M et al. The von Hippel–Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol 2006; 175: 547–554. CASPubMedPubMed Central Google Scholar
Lutz MS, Burk RD . Primary cilium formation requires von Hippel–Lindau gene function in renal-derived cells. Cancer Res 2006; 66: 6903–6907. CASPubMed Google Scholar
Zhou MI, Wang H, Foy RL, Ross JJ, Cohen HT . Tumor suppressor von Hippel–Lindau (VHL) stabilization of Jade-1 protein occurs through plant homeodomains and is VHL mutation dependent. Cancer Res 2004; 64: 1278–1286. CASPubMed Google Scholar
Zhou MI, Wang H, Ross JJ, Kuzmin I, Xu C, Cohen HT . The von Hippel–Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1. J Biol Chem 2002; 277: 39887–39898. CASPubMed Google Scholar
Pal S, Claffey KP, Dvorak HF, Mukhopadhyay D . The von Hippel–Lindau gene product inhibits vascular permeability factor/vascular endothelial growth factor expression in renal cell carcinoma by blocking protein kinase C pathways. J Biol Chem 1997; 272: 27509–27512. CASPubMed Google Scholar
Pal S, Claffey KP, Cohen HT, Mukhopadhyay D . Activation of Sp1-mediated vascular permeability factor/vascular endothelial growth factor transcription requires specific interaction with protein kinase C zeta. J Biol Chem 1998; 273: 26277–26280. CASPubMed Google Scholar
Datta K, Nambudripad R, Pal S, Zhou M, Cohen HT, Mukhopadhyay D . Inhibition of insulin-like growth factor-I-mediated cell signaling by the von Hippel–Lindau gene product in renal cancer. J Biol Chem 2000; 275: 20700–20706. CASPubMed Google Scholar
Datta K, Sundberg C, Karumanchi SA, Mukhopadhyay D . The 104-123 amino acid sequence of the beta-domain of von Hippel–Lindau gene product is sufficient to inhibit renal tumor growth and invasion. Cancer Res 2001; 61: 1768–1775. CASPubMed Google Scholar
Okuda H, Saitoh K, Hirai S, Iwai K, Takaki Y, Baba M et al. The von Hippel–Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem 2001; 276: 43611–43617. CASPubMed Google Scholar
Li Z, Wang D, Na X, Schoen SR, Messing EM, Wu G . The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. EMBO J 2003; 22: 1857–1867. CASPubMedPubMed Central Google Scholar
Li Z, Na X, Wang D, Schoen SR, Messing EM, Wu G . Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel–Lindau tumor suppressor protein. J Biol Chem 2002; 277: 4656–4662. CASPubMed Google Scholar
Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y et al. von Hippel–Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci USA 2003; 100: 2706–2711. CASPubMedPubMed Central Google Scholar
Pioli PA, Rigby WF . The von Hippel–Lindau protein interacts with heteronuclear ribonucleoprotein a2 and regulates its expression. J Biol Chem 2001; 276: 40346–40352. CASPubMed Google Scholar
Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A et al. Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 1997; 94: 9102–9107. ArticleCASPubMedPubMed Central Google Scholar
Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH . Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 2006; 26: 8336–8346. CASPubMedPubMed Central Google Scholar
Pfander D, Kobayashi T, Knight MC, Zelzer E, Chan DA, Olsen BR et al. Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Development 2004; 131: 2497–2508. CASPubMed Google Scholar
Schipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS . Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 2001; 15: 2865–2876. CASPubMedPubMed Central Google Scholar
Neumann HP, Bender BU . Genotype–phenotype correlations in von Hippel–Lindau disease. J Intern Med 1998; 243: 541–545. CASPubMed Google Scholar
Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel–Lindau disease. Hum Mol Genet 2001; 10: 1029–1038. CASPubMed Google Scholar
Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin Jr WG . von Hippel–Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum Mol Genet 2001; 10: 1019–1027. CASPubMed Google Scholar
Cario H, Schwarz K, Jorch N, Kyank U, Petrides PE, Schneider DT et al. Mutations in the von Hippel–Lindau (VHL) tumor suppressor gene and VHL-haplotype analysis in patients with presumable congenital erythrocytosis. Haematologica 2005; 90: 19–24. CASPubMed Google Scholar
Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet 2002; 32: 614–621. CASPubMed Google Scholar
Haase VH, Glickman JN, Socolovsky M, Jaenisch R . Vascular tumors in livers with targeted inactivation of the von Hippel–Lindau tumor suppressor. Proc Natl Acad Sci USA 2001; 98: 1583–1588. CASPubMedPubMed Central Google Scholar
Rojiani AM, Owen DA, Berry K, Woodhurst B, Anderson FH, Scudamore CH et al. Hepatic hemangioblastoma. An unusual presentation in a patient with von Hippel–Lindau disease. Am J Surg Pathol 1991; 15: 81–86. CASPubMed Google Scholar
McGrath FP, Gibney RG, Morris DC, Owen DA, Erb SR . Case report: multiple hepatic and pulmonary haemangioblastomas – a new manifestation of von Hippel–Lindau disease. Clin Radiol 1992; 45: 37–39. CASPubMed Google Scholar
Ma W, Tessarollo L, Hong SB, Baba M, Southon E, Back TC et al. Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res 2003; 63: 5320–5328. CASPubMed Google Scholar
Ding M, Cui S, Li C, Jothy S, Haase V, Steer BM et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 2006; 12: 1081–1087. CASPubMed Google Scholar
Brukamp K, Jim B, Moeller MJ, Haase VH . Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Am J Physiol Renal Physiol 2007; 293: 1397–1407. Google Scholar
Steenhard B, Isom K, Stroganova L, St John PL, Freeburg PB, Holzman LB et al. Podocyte-selective deletion of von Hippel–Lindau (VHL) protein causes albuminuria. In: ASN Annual Meeting, 2005, Philadelphia, PA J Am Soc Nephrol 2005: 667A.
Rankin EB, Tomaszewski JE, Haase VH . Renal cyst development in mice with conditional inactivation of the von Hippel–Lindau tumor suppressor. Cancer Res 2006; 66: 2576–2583. CASPubMedPubMed Central Google Scholar
Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 2007; 117: 1926–1932. CASPubMedPubMed Central Google Scholar
Neumann AK, Yang J, Biju MP, Joseph SK, Johnson RS, Haase VH et al. Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci USA 2005; 102: 17071–17076. CASPubMedPubMed Central Google Scholar
Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH . Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Mol Cell Biol 2004; 24: 9038–9047. CASPubMedPubMed Central Google Scholar
Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003; 112: 645–657. CASPubMedPubMed Central Google Scholar
Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH . Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest 2004; 114: 1098–1106. CASPubMedPubMed Central Google Scholar
Seagroves TN, Liao D, Cardiff R, Haase VH, Johnson RS . Deletion of vhl impairs normal mammary gland development. In: Biology of Hypoxia: The Role of Oxygen Sensing in Development, Normal Function and Disease. Keystone Symposia: Steamboat Springs, Colorado, 2004, p 100. Google Scholar
Boutin A, Haase VH, Johnson RS . Response to oxygenation in differentiation, function and pathology of the epidermis. In: Biology of Hypoxia: The Role of Oxygen Sensing in Development, Normal Function and Disease. Keystone Symposia: Steamboat Springs, Colorado, 2004, p 114. Google Scholar
Tang N, Mack F, Haase VH, Simon MC, Johnson RS . pVHL function is essential for endothelial extracellular matrix deposition. Mol Cell Biol 2006; 26: 2519–2530. CASPubMedPubMed Central Google Scholar
Wang Y, Wan C, Deng L, Liu X, Cao X, Gilbert SR et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest 2007; 117: 1616–1626. CASPubMedPubMed Central Google Scholar
Hong SB, Furihata M, Baba M, Zbar B, Schmidt LS . Vascular defects and liver damage by the acute inactivation of the VHL gene during mouse embryogenesis. Lab Invest 2006; 86: 664–675. CASPubMed Google Scholar
Vortmeyer AO, Gnarra JR, Emmert-Buck MR, Katz D, Linehan WM, Oldfield EH et al. von Hippel–Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel–Lindau disease. Hum Pathol 1997; 28: 540–543. CASPubMed Google Scholar
Lach B, Gregor A, Rippstein P, Omulecka A . Angiogenic histogenesis of stromal cells in hemangioblastoma: ultrastructural and immunohistochemical study. Ultrastruct Pathol 1999; 23: 299–310. CASPubMed Google Scholar
Vortmeyer AO, Frank S, Jeong SY, Yuan K, Ikejiri B, Lee YS et al. Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel–Lindau disease. Cancer Res 2003; 63: 7051–7055. CASPubMed Google Scholar
Neumann HP, Zbar B . Renal cysts, renal cancer and von Hippel–Lindau disease [editorial]. Kidney Int 1997; 51: 16–26. CASPubMed Google Scholar
Kleymenova E, Everitt JI, Pluta L, Portis M, Gnarra JR, Walker CL . Susceptibility to vascular neoplasms but no increased susceptibility to renal carcinogenesis in Vhl knockout mice. Carcinogenesis 2004; 25: 309–315. CASPubMed Google Scholar
Da Silva JL, Lacombe C, Bruneval P, Casadevall N, Leporrier M, Camilleri JP et al. Tumor cells are the site of erythropoietin synthesis in human renal cancers associated with polycythemia. Blood 1990; 75: 577–582. CASPubMed Google Scholar
Krieg M, Marti HH, Plate KH . Coexpression of erythropoietin and vascular endothelial growth factor in nervous system tumors associated with von Hippel–Lindau tumor suppressor gene loss of function. Blood 1998; 92: 3388–3393. CASPubMed Google Scholar
Hickey MM, Lam JC, Bezman NA, Rathmell WK, Simon MC . von Hippel–Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2alpha signaling and splenic erythropoiesis. J Clin Invest 2007; 117: 3879–3889. CASPubMedPubMed Central Google Scholar
Yoder BK . Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol 2007; 18: 1381–1388. CASPubMed Google Scholar
Esteban MA, Harten SK, Tran MG, Maxwell PH . Formation of primary cilia in the renal epithelium is regulated by the von Hippel–Lindau tumor suppressor protein. J Am Soc Nephrol 2006; 17: 1801–1806. CASPubMed Google Scholar
Maher ER, Kaelin Jr WG . von Hippel–Lindau disease. Medicine (Baltimore) 1997; 76: 381–391. CAS Google Scholar
Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 2002; 1: 459–468. CASPubMed Google Scholar
Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A et al. Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 2006; 66: 3567–3575. CASPubMed Google Scholar
Evans AJ, Russell RC, Roche O, Burry TN, Fish JE, Chow VW et al. VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol 2007; 27: 157–169. CASPubMed Google Scholar
Krishnamachary B, Zagzag D, Nagasawa H, Rainey K, Okuyama H, Baek JH et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel–Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 2006; 66: 2725–2731. CASPubMed Google Scholar
Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM . Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3: 347–361. PubMed Google Scholar
Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 2006; 12: 122–127. CASPubMed Google Scholar
Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W . Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 2003; 425: 307–311. CASPubMed Google Scholar
Gervais ML, Henry PC, Saravanan A, Burry TN, Gallie BL, Jewett MA et al. Nuclear E-cadherin and VHL immunoreactivity are prognostic indicators of clear-cell renal cell carcinoma. Lab Invest 2007; 87: 1252–1264. CASPubMed Google Scholar
Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Han C et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel–Lindau gene mutation. Cancer Res 2002; 62: 2957–2961. CASPubMed Google Scholar
Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U et al. Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 2002; 13: 1721–1732. CASPubMed Google Scholar
Kondo K, Klco JM, Nakamura E, Lechpammer M, Kaelin WG . Inhibition of HIF is necessary for tumor suppression by the von Hippel–Lindau protein. Cancer Cell 2002; 1: 237–246. CASPubMed Google Scholar
Maranchi JK, Vasselli JR, Riss J, Bonifacio JS, Linehan WM, Klausner RD . The contribution of VHL subtrate binding and HIF-1_α_ to the phenotype of vhl loss in renal cell carcinoma. Cancer Cell 2002; 1: 247–253. Google Scholar
Zimmer M, Doucette D, Siddiqui N, Iliopoulos O . Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL−/− tumors. Mol Cancer Res 2004; 2: 89–95. CASPubMed Google Scholar
Kondo K, Kim WY, Lechpammer M, Kaelin Jr WG . Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 2003; 1: E83. PubMedPubMed Central Google Scholar
Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S . Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL−/− renal cancer. Cancer Res 2005; 65: 5221–5230. CASPubMed Google Scholar
Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Mol Cell Biol 2005; 25: 5675–5686. CASPubMedPubMed Central Google Scholar
Bindra RS, Vasselli JR, Stearman R, Linehan WM, Klausner RD . VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. Cancer Res 2002; 62: 3014–3019. CASPubMed Google Scholar
Zatyka M, da Silva NF, Clifford SC, Morris MR, Wiesener MS, Eckardt KU et al. Identification of cyclin D1 and other novel targets for the von Hippel–Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel–Lindau disease. Cancer Res 2002; 62: 3803–3811. CASPubMed Google Scholar
Wykoff CC, Sotiriou C, Cockman ME, Ratcliffe PJ, Maxwell P, Liu E et al. Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br J Cancer 2004; 90: 1235–1243. CASPubMedPubMed Central Google Scholar
Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC . HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007; 11: 335–347. CASPubMedPubMed Central Google Scholar
Acker T, Diez-Juan A, Aragones J, Tjwa M, Brusselmans K, Moons L et al. Genetic evidence for a tumor suppressor role of HIF-2alpha. Cancer Cell 2005; 8: 131–141. CASPubMed Google Scholar
Maynard MA, Evans AJ, Shi W, Kim WY, Liu FF, Ohh M . Dominant-negative HIF-3alpha4 suppresses VHL-null renal cell carcinoma progression. Cell Cycle 2007; 6: 2810–2816. CASPubMed Google Scholar
Pollard PJ, Spencer-Dene B, Shukla D, Howarth K, Nye E, El-Bahrawy M et al. Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell 2007; 11: 311–319. CASPubMed Google Scholar
Mack FA, Rathmell WK, Arsham AM, Gnarra J, Keith B, Simon MC . Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. Cancer Cell 2003; 3: 75–88. CASPubMedPubMed Central Google Scholar
Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394: 485–490. CASPubMed Google Scholar
Rathmell WK, Hickey MM, Bezman NA, Chmielecki CA, Carraway NC, Simon MC . In vitro and in vivo models analyzing von Hippel–Lindau disease-specific mutations. Cancer Res 2004; 64: 8595–8603. CASPubMed Google Scholar
Hu CJ, Iyer S, Sataur A, Covello KL, Chodosh LA, Simon MC . Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol 2006; 26: 3514–3526. CASPubMedPubMed Central Google Scholar
Flamme I, Krieg M, Plate KH . Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. Am J Pathol 1998; 153: 25–29. CASPubMedPubMed Central Google Scholar
Kim WY, Safran M, Buckley MR, Ebert BL, Glickman J, Bosenberg M et al. Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J 2006; 25: 4650–4662. CASPubMedPubMed Central Google Scholar
Takeda K, Cowan A, Fong GH . Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 2007; 116: 774–781. CASPubMed Google Scholar
Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 2003; 22: 4082–4090. CASPubMedPubMed Central Google Scholar
Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 2004; 279: 38458–38465. CASPubMed Google Scholar