Dendritic cells and the control of immunity (original) (raw)
Steinman, R. M. in Fundamental Immunology(ed. Paul, W. E.) 4th edn (Lippincott-Raven, Philadelphia, in the press).
Inaba, K.et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176, 1693–1702 (1992). ArticleCASPubMed Google Scholar
Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature360, 258–261 (1992). ArticleADSCASPubMed Google Scholar
Szabolcs, P., Moore, M. A. S. & Young, J. W. Expansion of immunostimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-α. J. Immunol.154, 5851–5861 (1995). CASPubMed Google Scholar
Romani, N.et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med.180, 83–93 (1994). ArticleCASPubMed Google Scholar
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med.179, 1109–1118 (1994). ArticleCASPubMed Google Scholar
Sallusto, F. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate antigen to the MHC class II compartment. Downregulation by cytokines and bacterial products. J. Exp. Med.182, 389–400 (1995). ArticleCASPubMed Google Scholar
Romani, N.et al. Generation of mature dendritic cells from human blood: An improved method with special regard to clinical applicability. J. Immunol. Meth.196, 137–151 (1996). ArticleCAS Google Scholar
Reddy, A., Sapp, M., Feldman, M., Subklewe, M. & Bhardwaj, N. Amonocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood90, 3640–3646 (1997). CASPubMed Google Scholar
Maraskovsky, E.et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 and ligand-treated mice: Multiple dendritic cell subpopulations identified. J. Exp. Med.184, 1953–1962 (1996). ArticleCASPubMed Google Scholar
Adema, G. J.et al. Adendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature387, 713–717 (1997). ArticleADSCASPubMed Google Scholar
Mueller, C. G. F.et al. Polymerase chain reaction selects a novel disintegrin-proteinase from CD40-activated germinal center dendritic cells. J. Exp. Med.186, 655–663 (1997). ArticleCASPubMedPubMed Central Google Scholar
Greaves, D. R.et al. CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells. J. Exp. Med.186, 837–844 (1997). ArticleCASPubMedPubMed Central Google Scholar
Winzler, C.et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med.185, 317–328 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bhardwaj, N., Young, J. W., Nisanian, A. J., Baggers, J. & Steinman, R. M. Small amounts of superantigen, when presented on dendritic cells, are sufficient to initiate T cell responses. J. Exp. Med.178, 633–642 (1993). ArticleCASPubMed Google Scholar
Inaba, K., Inaba, M., Naito, M. & Steinman, R. M. Dendritic cell progenitors phagocytose particulates, including Bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J.Exp. Med.178, 479–488 (1993). ArticleCASPubMed Google Scholar
Moll, H., Fuchs, H., Blank, C. & Rollinghoff, M. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur. J. Immunol.23, 1595–1601 (1993). ArticleCASPubMed Google Scholar
Zitvogel, L.et al. Therapy of murine tumors with tumor peptide pulsed dendritic cells: Dependence on T-cells, B7 costimulation, and Th1-associated cytokines. J. Exp. Med.183, 87–97 (1996). ArticleCASPubMed Google Scholar
Paglia, P., Chiodoni, C., Rodolfo, M. & Colombo, M. P. Murine dendritic cells loaded in vitro with soluble protein prime CTL against tumor antigen in vivo. J. Exp. Med.183, 317–322 (1996). ArticleCASPubMed Google Scholar
Mayordomo, J. I.et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med.1, 1297–1302 (1995). ArticleCASPubMed Google Scholar
Hsu, F. J.et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med.2, 52–58 (1996). ArticleCASPubMed Google Scholar
Ingulli, E., Mondino, A., Khoruts, A. & Jenkins, M. K. In vivo detection of dendritic cell antigen presentation to CD4+ T cells. J. Exp. Med.185, 2133–2141 (1997). ArticleCASPubMedPubMed Central Google Scholar
Luther, S. A., Gulbranson-Judge, A., Acha-Orbea, H. & Maclennan, I. C. M. Viral superantigen drives extrafollicular and follicular B differentiation leading to virus-specific antibody production. J. Exp. Med.185, 551–562 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kudo, S., Matsuno, K., Ezaki, T. & Ogawa, M. Anovel migration pathway for rat dendritic cells from the blood: Hepatic sinusoids-lymph translocation. J. Exp. Med.185, 777–784 (1997). ArticleCASPubMedPubMed Central Google Scholar
Inaba, K.et al. High levels of a major histocompatibility complex II–self peptide complex on dendritic cells from lymph node. J. Exp. Med.186, 665–672 (1997). ArticleCASPubMedPubMed Central Google Scholar
Cella, M.et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med.184, 747–752 (1996). ArticleCASPubMed Google Scholar
Koch, F.et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J. Exp. Med.184, 741–747 (1996). ArticleCASPubMed Google Scholar
Reis e Sousa, C.et al. In vivo microbial stimulation induces rapid CD40L-independent production of IL-12 by dendritic cells and their re-distribution to T cell areas. J. Exp. Med.186, 1819–1829 (1997). ArticleCASPubMed Google Scholar
Caux, C.et al. B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J. Exp. Med.180, 1841–1847 (1994). ArticleCASPubMed Google Scholar
Inaba, K.et al. The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J. Exp. Med.180, 1849–1860 (1994). ArticleCASPubMed Google Scholar
Bhardwaj, N.et al. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic resonses from human CD8+ T cells. J. Clin. Invest.94, 797–807 (1994). ArticleCASPubMedPubMed Central Google Scholar
Bender, A., Bui, L. K., Feldman, M. A. V., Larsson, M. & Bhardwaj, N. Inactivated influenza virus, when presented on dendritic cells, elicits human CD8+ cytolytic T cell responses. J. Exp. Med.182, 1663–1671 (1995). ArticleCASPubMed Google Scholar
Caux, C.et al. Activation of human dendritic cells through CD40 cross-linking. J. Exp. Med.180, 1263–1272 (1994). ArticleCASPubMed Google Scholar
Wong, B. R.et al. TRANCE, a new TNF family member predominantly expressed in T cells, is a dendritic cell specific survival factor. J. Exp. Med.186, 2075–2080 (1997). ArticleCASPubMedPubMed Central Google Scholar
Anderson, D. M.et al. Ahomologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature390, 175–179 (1997). ArticleADSCASPubMed Google Scholar
Lukas, M.et al. Human cutaneous dendritic cells migrate through dermal lymphatic vessels in a skin organ culture model. J. Invest. Dermatol.106, 1293–1299 (1996). ArticleCASPubMed Google Scholar
Reis e Sousa, C., Stahl, P. D. & Austyn, J. M. Phagocytosis of antigens by Langerhans cells in vitro. J.Exp. Med.178, 509–519 (1993). ArticleCASPubMed Google Scholar
Svensson, M., Stockinger, B. & Wick, M. J. Bone marrow-derived dendritic cells can process bacteria for MHC-1 and MHC-II presentation to T cells. J. Immunol.158, 4229–4236 (1997). CASPubMed Google Scholar
Jiang, W.et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature375, 151–155 (1995). ArticleADSCASPubMed Google Scholar
Nijman, H. W.et al. Antigen capture and MHC class II compartments of freshly isolated and cultured human blood dendritic cells. J. Exp. Med.182, 163–174 (1995). ArticleCASPubMed Google Scholar
Pierre, P.et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature388, 787–792 (1997). ArticleADSCASPubMed Google Scholar
Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature388, 782–787 (1997). ArticleADSCASPubMed Google Scholar
Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class-I restricted CTLs. Nature392, 86–89 (1998). ArticleADSCASPubMed Google Scholar
Buelens, C.et al. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by IL-10. Eur. J. Immunol.27, 1848–1852 (1997). ArticleCASPubMed Google Scholar
Sallusto, F., Nicolo, C., De Maria, R., Corinti, S. & Testi, R. Ceramide inhibits antigen uptake and presentation by dendritic cells. J. Exp. Med.184, 2411–2416 (1996). ArticleCASPubMedPubMed Central Google Scholar
Granelli-Piperno, A., Pope, M., Inaba, K. & Steinman, R. M. Coexpression of REL and SP1 transcription factors in HIV-1 induced, dendritic cell-T cell syncytia. Proc. Natl Acad. Sci. USA92, 1094–10948 (1995). Article Google Scholar
Kitajima, T., Arizumi, K., Bergstresser, P. R. & Takashima, A. Anovel mechanism of glucocorticoid-induced immune suppression: The inhibition of T cell-mediated terminal maturation of a murine dendritic cell line. J. Clin. Invest.98, 142–147 (1996). ArticleCASPubMedPubMed Central Google Scholar
Brocker, T. Survival of mature CD4 T lymphocytes is dependent on MHC class II expressing dendritic cells. J. Exp. Med.186, 1223–1232 (1997). ArticleCASPubMedPubMed Central Google Scholar
O'Doherty, U.et al. Human blood contains two subsets of dendritic cells, one immunologically mature, and the other immature. Immunology82, 487–493 (1994). CASPubMedPubMed Central Google Scholar
Brown, K. A.et al. Human blood dendritic cells: binding to vascular endothelium and expression of adhesion molecules. Clin. Exp. Immunol.107, 601–607 (1997). ArticleCASPubMedPubMed Central Google Scholar
Matsuno, K., Ezaki, T., Kudo, S. & Uehara, Y. Alife stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis and translocation from the liver to hepatic lymph. J. Exp. Med.183, 1865–1878 (1996). ArticleCASPubMed Google Scholar
McWilliam, A. S.et al. Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J. Exp. Med.184, 2429–2432 (1996). ArticleCASPubMedPubMed Central Google Scholar
Roake, J. A.et al. Dendritic cell loss from non-lymphoid tissues following systemic administration of lipopolysaccharide, tumour necrosis factor, and interleukin-1. J. Exp. Med.181, 2237–2248 (1995). ArticleCASPubMed Google Scholar
MacPherson, G. G., Jenkins, C. D., Stein, M. J. & Edwards, C. Endotoxin-mediated dendritic cell release from the intestine: Characterization of released dendritic cells and TNF dependence. J.Immunol.154, 1317–1322 (1995). CASPubMed Google Scholar
De Smedt, T.et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med.184, 1413–1424 (1996). ArticleCASPubMed Google Scholar
Hosoi, J.et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature363, 159–162 (1993). ArticleADSCASPubMed Google Scholar
Sozzani, S.et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J. Immunol.155, 3292–3295 (1995). CASPubMed Google Scholar
Young, J. W., Szabolcs, P. & Moore, M. A. S. Identification of dendritic cell colony-forming units among normal CD4+ bone marrow progenitors that are expanded by c-_kit_-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor α. J. Exp. Med.182, 1111–1120 (1995). ArticleCASPubMed Google Scholar
Saunders, D.et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor. J. Exp. Med.184, 2185–2196 (1996). ArticleCASPubMedPubMed Central Google Scholar
Flores-Romo, L.et al. CD40 ligation on human CD34+ hematopoietic progenitors induces their proliferation and differentiation into functional dendritic cells. J. Exp. Med.185, 341–349 (1997). ArticleCASPubMedPubMed Central Google Scholar
Caux, C.et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+ TNFα. J. Exp. Med.184, 695–706 (1996). ArticleCASPubMed Google Scholar
Strunk, D., Egger, C., Leitner, G., Hanau, D. & Stingl, G. Askin homing molecule defines the Langerhans cells progenitor in human peripheral blood. J. Exp. Med.185, 1131–1136 (1997). ArticleCASPubMedPubMed Central Google Scholar
Caux, C.et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNFα: II Functional analysis. Blood90, 1458–1470 (1997). CASPubMed Google Scholar
Szabolcs, P.et al. Dendritic cells and macrophages can mature independently from a human bone marrow-derived, post-CFU intermediate. Blood87, 4520–4530 (1996). CASPubMed Google Scholar
Borkowski, T. A., Letterio, J. J., Farr, A. G. & Udey, M. C. Arole for endogenous transforming growth factor β1 in Langerhans cell biology: The skin of transforming growth factor β1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med.184, 2417–2422 (1996). ArticleCASPubMedPubMed Central Google Scholar
Suss, G. & Shortman, K. Asubclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand induced apoptosis. J. Exp. Med.183, 1789–1796 (1996). ArticleCASPubMed Google Scholar
Ardavin, C., Wu, L., Li, C. & Shortman, K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature362, 761–763 (1993). ArticleADSCASPubMed Google Scholar
Grouard, G.et al. The enigmatic plasmacytoid T cells develop into dendritic cells with IL-3 and CD40-ligand. J. Exp. Med.185, 1101–1111 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lieberman, P. H.et al. Langerhans cell [eosinophilic] granulomatosis. A clinicopathologic study encompassing 50 years. Am. J. Surg. Pathol.20, 519–552 (1996). ArticleCASPubMed Google Scholar
Fayette, J.et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J. Exp. Med.185, 1909–1918 (1997). ArticleCASPubMedPubMed Central Google Scholar
Frankel, S. S.et al. Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science272, 115–117 (1996). ArticleADSCASPubMed Google Scholar
Frankel, S. S.et al. Active replication of HIV-1 at the lymphoepithelial surface of the tonsil. Am. J. Pathol.151, 89–96 (1997). CASPubMedPubMed Central Google Scholar
Kelsall, B. L. & Strober, W. Distinct populations of dendritic cells are present in the subepithelial dome and T cell regions of the murine Peyer's Patch. J. Exp. Med.183, 237–247 (1996). ArticleCASPubMed Google Scholar
Matsumoto, M.et al. Distinct roles of lymphotoxin-α and type 1 TNF receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells. J. Exp. Med.186, 1997–2004 (1997). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y.-J., Grouard, G., de Bouteiller, O. & Banchereau, J. Follicular dendritic cells and germinal centers. Int. Rev. Cytology166, 139–179 (1996). ArticleCAS Google Scholar
Grouard, G., Durand, I., Filgueira, L., Banchereau, J. & Liu, Y.-J. Dendritic cells capable of stimulating T cells in germinal centres. Nature384, 364–367 (1996). ArticleADSCASPubMed Google Scholar
Brocker, T. & Karjalainen, K. Targeted expression of MHC class II molecules demonstrates that dendritic cells can induce negative but no positive selection of thymocytes in vivo. J. Exp. Med.185, 541–550 (1997). ArticleCASPubMedPubMed Central Google Scholar
Laufer, T. M., DeKoning, J., Markowitz, J. S., Lo, D. & Glimcher, L. H. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature383, 81–85 (1996). ArticleADSCASPubMed Google Scholar
Zal, T., Volkmann, A. & Stockinger, B. Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J. Exp. Med.180, 2089–2099 (1994). ArticleCASPubMed Google Scholar
Kurts, C.et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med.184, 923–930 (1996). ArticleCASPubMed Google Scholar
Kurts, C., Kosaka, H., Carbone, F. R., Miller, J. F. A. P. & Heath, W. R. Class I-restricted cross-presentation of exogenous self antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med.186, 239–245 (1997). ArticleCASPubMedPubMed Central Google Scholar
Forster, I. & Lieberam, I. Peripheral tolerance of CD4 T cells following local activation in adolescent mice. Eur. J. Immunol.26, 3194–3202 (1996). ArticleCASPubMed Google Scholar
Soderberg-Naucler, C., Fish, K. N. & Nelson, J. A. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell91, 119–126 (1997). ArticleCASPubMed Google Scholar
Rettig, M. B.et al. Kaposi's sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science276, 1851–1854 (1997). ArticleCASPubMed Google Scholar
Cameron, P. U.et al. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science257, 383–387 (1992). ArticleADSCASPubMed Google Scholar
Weissman, D., Barker, T. D. & Fauci, A. S. The efficiency of acute infection of CD4+ T cells is markedly enhanced in the setting of antigen-specific immune activation. J. Exp. Med.183, 687–692 (1996). ArticleCASPubMed Google Scholar
Pinchuk, L. M., Polacino, P. S., Agy, M. B., Klaus, S. J. & Clark, E. A. The role of CD40 and CD80 accessory cell molecules in dendritic cell-dependent HIV-1 infection. Immunity1, 317–325 (1994). ArticleCASPubMed Google Scholar
Pope, M.et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell78, 389–398 (1994). ArticleCASPubMed Google Scholar
Grosjean, I.et al. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J. Exp. Med.186, 801–812 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schnorr, J.-J.et al. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proc. Natl Acad. Sci. USA94, 5326–531 (1997). ArticleADSCASPubMedPubMed Central Google Scholar
Fugier-Vivier, I.et al. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J. Exp. Med.186, 813–823 (1997). ArticleCASPubMedPubMed Central Google Scholar
Pope, M., Elmore, D., Ho, D. & Marx, P. Dendritic cell–T cell mixtures, isolated from the skin and mucosae of macaques, support the replication of SIV. AIDS Res. Hum. Retro.13, 819–827 (1997). ArticleCAS Google Scholar
Chaux, P., Moutet, M., Faivre, J., Martin, F. & Martin, M. Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 constimulatory molecules of the T-cell activation. Lab. Invest.74, 975–983 (1996). CASPubMed Google Scholar
Specht, J. M.et al. Dendritic cells retrovirally transduced with a model tumor antigen gene are therapeutically effective against established pulmonary metastates. J. Exp. Med.186, 1213–1221 (1997). ArticleCASPubMedPubMed Central Google Scholar
Song, W.et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model tumor antigen induce protective and therapeutic antitumor immunity. J. Exp. Med.186, 1247–1256 (1997). ArticleCASPubMedPubMed Central Google Scholar
Schuler, G. & Steinman, R. M. Dendritic cells as adjuvants for immune-mediated resistance to tumors. J. Exp. Med.186, 1183–1187 (1997). ArticleCASPubMedPubMed Central Google Scholar
Josien, R., Heslan, M., Soulillou, J.-P. & Cuturi, M.-C. Rat spleen dendritic cells express natural killer cell receptor protein 1 (NKR-P1) and have cytotoxic activity to select targets via a Ca2+-dependent mechanism. J. Exp. Med.186, 467–472 (1997). ArticleCASPubMedPubMed Central Google Scholar
Condon, C., Watkins, S. C., Celluzzi, C. M., Thompson, K. & Falo, L. D. J DNA-based immunization by in vivo transfection of dendritic cells. Nature Med.2, 1122–1128 (1996). ArticleCASPubMed Google Scholar
Casares, S., Inaba, K., Brumeanu, T., Steinman, R. M. & Bona, C. A. Antigen presentation by dendritic cells following immunization with DNA encoding a class II-restricted viral epitope. J. Exp. Med.186, 1481–1486 (1997). ArticleCASPubMedPubMed Central Google Scholar
Colonna, M.et al. Acommon inhibitory receptor for MHC class I molecules on human lymphoid and myelomonocytic cells. J. Exp. Med.186, 1809–1818 (1997). ArticleCASPubMedPubMed Central Google Scholar
Vicari, A. P.et al. TECK: A novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity7, 291–302 (1997). ArticleCASPubMed Google Scholar