Topological restriction of SNARE-dependent membrane fusion (original) (raw)
References
Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature362, 318–324 (1993). ArticleADS Google Scholar
Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell21, 205–215 ( 1980). ArticleCAS Google Scholar
Newman, A. P. & Ferro-Novick, S. Characterization of new mutants in the early part of the yeast secretory pathway isolated by a [3H]mannose suicide selection. J. Cell Biol.105, 1587 –1594 (1987). ArticleCAS Google Scholar
Shim, J., Newman, A. P. & Ferro-Novick, S. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. J. Cell Biol.113, 55–64 (1991). ArticleCAS Google Scholar
Dascher, C., Ossig, R., Gallwitz, D. & Schmitt, H. D. Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol. Cell. Biol.11, 872–885 ( 1991). ArticleCAS Google Scholar
Hardwick, K. G. & Pelham, H. R. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J. Cell Biol.119, 513–521 (1992). ArticleCAS Google Scholar
Newman, A. P., Shim, J. & Ferro-Novick, S. BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol.10 , 3405–3414 (1990). ArticleCAS Google Scholar
Søgaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell78, 937–948 (1994). Article Google Scholar
Lian, J. P., Stone, S., Jiang, Y., Lyons, P. & Ferro-Novick, S. Ypt1p implicated in v-SNARE activation. Nature372, 698–701 ( 1994). ArticleADSCAS Google Scholar
Stone, S. et al. Bet1p activates the v-SNARE Bos1p. Mol. Biol. Cell8, 1175–1181 ( 1997). ArticleCAS Google Scholar
Sacher, M., Stone, S. & Ferro-Novick, S. The synaptobrevin-related domains of Bos1p and Sec22p bind to the syntaxin-like region of Sed5p. J. Biol. Chem.272, 17134–17138 (1997). ArticleCAS Google Scholar
Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature395, 347–353 ( 1998). ArticleADSCAS Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 ( 1998). ArticleCAS Google Scholar
Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl Acad. Sci. USA96, 12565 –12570 (1999). ArticleADSCAS Google Scholar
Fukuda, R. et al. Functional architecture of an intracellular t-SNARE. Nature407, 198–202 ( 2000). ArticleADSCAS Google Scholar
Cao, X. & Barlowe, C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes. J. Cell Biol.149, 55– 66 (2000). ArticleCAS Google Scholar
Rexach, M. F., Latterich, M. & Schekman, R. W. Characteristics of endoplasmic reticulum-derived transport vesicles. J. Cell Biol.126, 1133 –1148 (1994). ArticleCAS Google Scholar
Boehm, J., Ulrich, H. D., Ossig, R. & Schmitt, H. D. Kex2-dependent invertase secretion as a tool to study the targeting of transmembrane proteins which are involved in ER→Golgi transport in yeast. EMBO J.13, 3696–3710 ( 1994). ArticleCAS Google Scholar
Barrowman, J., Sacher, M. & Ferro-Novick, S. TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J.19, 862– 869 (2000). ArticleCAS Google Scholar
Nichols, B. J., Ungermann, C., Pelham, H. R., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature387, 199– 202 (1997). ArticleADSCAS Google Scholar
Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell75, 409–418 (1993). Article Google Scholar
Weber, T. et al. SNAREpins are functionally resistant to disruption by N-ethylmaleimide–sensitive fusion protein (NSF) and α-soluble NSF attachment protein (SNAP). J. Cell Biol.149 (2000).
McNew, J. A., Weber, T., Engelman, D. M., Sollner, T. H. & Rothman, J. E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell4, 415–421 (1999). ArticleCAS Google Scholar
McNew, J. A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol.150, 105–118 (2000). ArticleCAS Google Scholar
McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proetins. Nature407, 153– 159 (2000). ArticleADSCAS Google Scholar
Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem.274, 15440–15446 ( 1999). ArticleCAS Google Scholar
Yang, B. et al. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem.274, 5649–5653 (1999). ArticleCAS Google Scholar
Mellman, I. & Warren, G. The road taken: past and future foundations of membrane traffic. Cell100, 99– 112 (2000). ArticleCAS Google Scholar
McNew, J. A. et al. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett.435, 89– 95 (1998). ArticleADSCAS Google Scholar
Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol.126, 945–954 ( 1994). ArticleCAS Google Scholar