Topological restriction of SNARE-dependent membrane fusion (original) (raw)

References

  1. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).
    Article ADS Google Scholar
  2. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 ( 1980).
    Article CAS Google Scholar
  3. Newman, A. P. & Ferro-Novick, S. Characterization of new mutants in the early part of the yeast secretory pathway isolated by a [3H]mannose suicide selection. J. Cell Biol. 105, 1587 –1594 (1987).
    Article CAS Google Scholar
  4. Shim, J., Newman, A. P. & Ferro-Novick, S. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. J. Cell Biol. 113, 55–64 (1991).
    Article CAS Google Scholar
  5. Dascher, C., Ossig, R., Gallwitz, D. & Schmitt, H. D. Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol. Cell. Biol. 11, 872–885 ( 1991).
    Article CAS Google Scholar
  6. Hardwick, K. G. & Pelham, H. R. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J. Cell Biol. 119, 513–521 (1992).
    Article CAS Google Scholar
  7. Newman, A. P., Shim, J. & Ferro-Novick, S. BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol. 10 , 3405–3414 (1990).
    Article CAS Google Scholar
  8. Søgaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948 (1994).
    Article Google Scholar
  9. Lian, J. P., Stone, S., Jiang, Y., Lyons, P. & Ferro-Novick, S. Ypt1p implicated in v-SNARE activation. Nature 372, 698–701 ( 1994).
    Article ADS CAS Google Scholar
  10. Stone, S. et al. Bet1p activates the v-SNARE Bos1p. Mol. Biol. Cell 8, 1175–1181 ( 1997).
    Article CAS Google Scholar
  11. Sacher, M., Stone, S. & Ferro-Novick, S. The synaptobrevin-related domains of Bos1p and Sec22p bind to the syntaxin-like region of Sed5p. J. Biol. Chem. 272, 17134–17138 (1997).
    Article CAS Google Scholar
  12. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 ( 1998).
    Article ADS CAS Google Scholar
  13. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).
    Article CAS Google Scholar
  14. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl Acad. Sci. USA 96, 12565 –12570 (1999).
    Article ADS CAS Google Scholar
  15. Fukuda, R. et al. Functional architecture of an intracellular t-SNARE. Nature 407, 198–202 ( 2000).
    Article ADS CAS Google Scholar
  16. Cao, X. & Barlowe, C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes. J. Cell Biol. 149, 55– 66 (2000).
    Article CAS Google Scholar
  17. Rexach, M. F., Latterich, M. & Schekman, R. W. Characteristics of endoplasmic reticulum-derived transport vesicles. J. Cell Biol. 126, 1133 –1148 (1994).
    Article CAS Google Scholar
  18. Boehm, J., Ulrich, H. D., Ossig, R. & Schmitt, H. D. Kex2-dependent invertase secretion as a tool to study the targeting of transmembrane proteins which are involved in ER→Golgi transport in yeast. EMBO J. 13, 3696–3710 ( 1994).
    Article CAS Google Scholar
  19. Barrowman, J., Sacher, M. & Ferro-Novick, S. TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J. 19, 862– 869 (2000).
    Article CAS Google Scholar
  20. Nichols, B. J., Ungermann, C., Pelham, H. R., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199– 202 (1997).
    Article ADS CAS Google Scholar
  21. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).
    Article Google Scholar
  22. Weber, T. et al. SNAREpins are functionally resistant to disruption by N-ethylmaleimide–sensitive fusion protein (NSF) and α-soluble NSF attachment protein (SNAP). J. Cell Biol. 149 (2000).
  23. McNew, J. A., Weber, T., Engelman, D. M., Sollner, T. H. & Rothman, J. E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4, 415–421 (1999).
    Article CAS Google Scholar
  24. McNew, J. A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–118 (2000).
    Article CAS Google Scholar
  25. McNew, J. A. et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proetins. Nature 407, 153– 159 (2000).
    Article ADS CAS Google Scholar
  26. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. & Jahn, R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15440–15446 ( 1999).
    Article CAS Google Scholar
  27. Yang, B. et al. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653 (1999).
    Article CAS Google Scholar
  28. Mellman, I. & Warren, G. The road taken: past and future foundations of membrane traffic. Cell 100, 99– 112 (2000).
    Article CAS Google Scholar
  29. McNew, J. A. et al. Gos1p, a Saccharomyces cerevisiae SNARE protein involved in Golgi transport. FEBS Lett. 435, 89– 95 (1998).
    Article ADS CAS Google Scholar
  30. Whiteheart, S. W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 ( 1994).
    Article CAS Google Scholar

Download references