Secrets of actin-based motility revealed by a bacterial pathogen (original) (raw)
Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science288, 88–95 (2000). ArticleCASPubMed Google Scholar
Euteneuer, U. & Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature310, 58–61 ( 1984). ArticleCASPubMed Google Scholar
Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm . Curr. Biol.9, 11–20 (1999). ArticleCASPubMed Google Scholar
Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol.101, 597–602 (1985).These photobleaching studies show that actin monomers are added at the leading edge and that the actin meshwork translocates backward towards the centre of the cell in a stationary lamellipodium. ArticleCASPubMed Google Scholar
Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone . J. Cell Biol.107, 1505– 1516 (1988). ArticleCASPubMed Google Scholar
Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature352, 126– 131 (1991).Shows that the rate of cell motility is directly related to the rate of actin filament assembly at the leading edge and that filaments further back in the lamellipodium remain stationary as the rapidly moving cell translocates over them. ArticleCASPubMed Google Scholar
Theriot, J. A. & Mitchison, T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J. Cell Biol.119, 367–377 (1992). ArticleCASPubMed Google Scholar
Zigmond, S. H. Recent quantitative studies of actin filament turnover during cell locomotion . Cell Motil. Cytoskeleton25, 309– 316 (1993). ArticleCASPubMed Google Scholar
Shariff, A. & Luna, E. J. Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes. Science256, 245–247 (1992). ArticleCASPubMed Google Scholar
Oster, G. F. & Perelson, A. S. The physics of cell motility . J. Cell Sci.8, S35–S54 (1987). Article Google Scholar
Tilney, L. G. & Portnoy, D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol.109, 1597 –1608 (1989).This is the initial publication showing that the bacterial pathogen,Listeria monocytogenes, associates with host cytoplasmic actin, suggesting that these bacteria move within and between cells in some manner involving the actin cytoskeleton. ArticleCASPubMed Google Scholar
Mounier, J., Ryter, A., Coquis-Rondon, M. & Sansonetti, P. J. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco- 2. Infect. Immunol.58, 1048–1058 (1990). CAS Google Scholar
Makino, S., Sasakawa, C., Kamata, K., Kurata, T. & Yoshikawa, M. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell46, 551–555 ( 1986). ArticleCASPubMed Google Scholar
Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl Acad. Sci. USA86, 3867–3871 (1989). ArticleCASPubMedPubMed Central Google Scholar
Dabiri, G. A., Sanger, J. M., Portnoy, D. A. & Southwick, F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl Acad. Sci. USA87, 6068–6072 ( 1990). ArticleCASPubMedPubMed Central Google Scholar
Robbins, J. R. et al. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol.146, 1333–1350 (1999). ArticleCASPubMedPubMed Central Google Scholar
Theriot, J. A. The cell biology of infection by intracellular bacterial pathogens. Annu. Rev. Cell. Dev. Biol.11, 213– 239 (1995). ArticleCASPubMed Google Scholar
Sanger, J. M., Sanger, J. W. & Southwick, F. S. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect. Immunol.60, 3609–3619 (1992). Shows that actin monomers add to the tail only at the bacterial surface whereas α–actinin and tropomyosin are found throughout the tail, and suggests that actin polymerization may provide the force for motility. CAS Google Scholar
Tilney, L. G., DeRosier, D. J., Weber, A. & Tilney, M. S. How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J. Cell Biol.118, 83–93 (1992). ArticleCASPubMed Google Scholar
Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature357, 257–260 (1992). Shows that the rate of bacterial motility is the same as the rate of actin polymerization and that actin depolymerization is independent of position in the comet tail. ArticleCASPubMed Google Scholar
Theriot, J. A., Rosenblatt, J., Portnoy, D. A., Goldschmidt-Clermont, P. J. & Mitchison, T. J. Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts. Cell76, 505– 517 (1994). ArticleCASPubMed Google Scholar
Kocks, C. et al. _L. monocytogenes_-induced actin assembly requires the actA gene product, a surface protein. Cell68, 521–531 (1992).Shows that the bacterial surface protein ActA is required for actin-based motility ofListeria monocytogenes. ArticleCASPubMed Google Scholar
Domann, E. et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J.11, 1981–1990 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kocks, C. et al. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively . Mol. Microbiol.18, 413– 423 (1995). ArticleCASPubMed Google Scholar
Smith, G. A., Portnoy, D. A. & Theriot, J. A. Asymmetric distribution of the Listeria monocytogenes ActA protein is required and sufficient to direct actin-based motility . Mol. Microbiol.17, 945– 951 (1995). ArticleCASPubMed Google Scholar
Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization . Proc. Natl Acad. Sci. USA96, 4908– 4913 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J.14, 1314–1321 (1995). This was the first identification of a host-cell cytoskeletal protein (VASP) able to interact directly with a bacterial virulence factor (ActA). ArticleCASPubMedPubMed Central Google Scholar
Reinhard, M. et al. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J.14, 1583–1589 (1995). ArticleCASPubMedPubMed Central Google Scholar
Marchand, J. B. et al. Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface. J. Cell Biol.130, 331–343 (1995). ArticleCASPubMed Google Scholar
Carlsson, L., Nystrom, L. E., Sundkvist, I., Markey, F. & Lindberg, U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol.115, 465–483 (1977). ArticleCASPubMed Google Scholar
Goldschmidt-Clermont, P. J. et al. The control of actin nucleotide exchange by thymosin β 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol. Biol. Cell3, 1015– 1024 (1992). ArticleCASPubMedPubMed Central Google Scholar
Pantaloni, D. & Carlier, M. F. How profilin promotes actin filament assembly in the presence of thymosin β 4. Cell75, 1007–1014 (1993). ArticleCASPubMed Google Scholar
Smith, G. A., Theriot, J. A. & Portnoy, D. A. The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J. Cell Biol.135, 647– 660 (1996). ArticleCASPubMed Google Scholar
Lasa, I., David, V., Gouin, E., Marchand, J. B. & Cossart, P. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol.18, 425–436 (1995). ArticleCASPubMed Google Scholar
Pistor, S., Chakraborty, T., Walter, U. & Wehland, J. The bacterial actin nucleator protein ActA of Listeria monocytogenes contains multiple binding sites for host microfilament proteins. Curr. Biol.5, 517–525 ( 1995). ArticleCASPubMed Google Scholar
Niebuhr, K. et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J.16, 5433–5444 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics . Cell87, 227–239 (1996). ArticleCASPubMed Google Scholar
Laurent, V. et al. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol.144 , 1245–1258 (1999). ArticleCASPubMedPubMed Central Google Scholar
Geese, M. et al. Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed . J. Cell Sci.113, 1415– 1426 (2000). CASPubMed Google Scholar
Bear, J. E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins . Cell101, 717–728 (2000). ArticleCASPubMed Google Scholar
Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature385, 265–269 ( 1997).Using a visual assay to detect nucleation of an actin cloud at the surface of the bacterial pathogen,L. monocytogenes, a seven-member protein complex responsible for actin filament nucleation was isolated. ArticleCASPubMed Google Scholar
Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J. Cell Biol.127 , 107–115 (1994). ArticleCASPubMed Google Scholar
Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA95, 6181–6186 (1998). Shows that Arp2/3 has a high affinity for the pointed end of actin filaments in addition to side binding, and leads to a model for actin filament network branching that is the current model for actin assembly at the leading edge. ArticleCASPubMedPubMed Central Google Scholar
Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science281, 105– 108 (1998). ArticleCASPubMed Google Scholar
Skoble, J., Portnoy, D. A. & Welch, M. D. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell Biol.150, 527–537 (2000). ArticleCASPubMedPubMed Central Google Scholar
Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol.145, 1009–1026 (1999). This is a beautiful study using correlative light and electron microscopy to compare protein localization and structure of the actin network in the lamellipodia of fast moving keratocytes and slower moving fibroblasts. ArticleCASPubMedPubMed Central Google Scholar
Mullins, R. D., Stafford, W. F. & Pollard, T. D. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. J. Cell Biol.136, 331–343 (1997). ArticleCASPubMedPubMed Central Google Scholar
Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol.138, 375– 384 (1997). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J.17, 2767– 2776 (1998).Shows that N–WASP, a known activator of Arp2/3, mediates actin tail formation at the pole ofS. flexnerithrough the bacterial surface protein VirG (IcsA), linking bacteria to the other host cell factors that help assemble the comet tail. ArticleCASPubMedPubMed Central Google Scholar
David, V. et al. Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach. J. Cell Sci.111, 2877–2884 (1998). CASPubMed Google Scholar
Laine, R. O. et al. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infect. Immunol.66, 3775–3782 (1998). CAS Google Scholar
McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol.138, 771– 781 (1997). ArticleCASPubMedPubMed Central Google Scholar
Maciver, S. K., Zot, H. G. & Pollard, T. D. Characterization of actin filament severing by actophorin from Acanthamoeba castellanii. J. Cell Biol.115, 1611–1620 (1991). ArticleCASPubMed Google Scholar
Carlier, M. F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol.136, 1307–1322 ( 1997).Shows that the actin depolymerization ratein vitrois directly affected by ADF/cofilin in a concentration-dependent fashion and that addition of ADF to cell extracts increases turnover rate inL. monocytogenesactin tails. ArticleCASPubMedPubMed Central Google Scholar
Rosenblatt, J., Agnew, B. J., Abe, H., Bamburg, J. R. & Mitchison, T. J. Xenopus actin depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails. J. Cell Biol.136, 1323– 1332 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lappalainen, P. & Drubin, D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature388, 78–82 (1997). Using a yeast genetic study, providesin vivoevidence that cofilin, an actin depolymerizing factor, does in fact enhance filament depolymerization in cells. ArticleCASPubMed Google Scholar
Bamburg, J. R. & Bray, D. Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol.105, 2817–2825 ( 1987). ArticleCASPubMed Google Scholar
Prevost, M. C. et al. Unipolar reorganization of F-actin layer at bacterial division and bundling of actin filaments by plastin correlate with movement of Shigella flexneri within HeLa cells. Infect. Immunol.60, 4088–4099 (1992). CAS Google Scholar
Dold, F. G., Sanger, J. M. & Sanger, J. W. Intact α-actinin molecules are needed for both the assembly of actin into the tails and the locomotion of Listeria monocytogenes inside infected cells. Cell Motil. Cytoskeleton28, 97–107 (1994). ArticleCASPubMed Google Scholar
Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science255, 325– 327 (1992). ArticleCASPubMed Google Scholar
Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature401, 613 –616 (1999).Identifies the minimal set of proteins required for the reconstitution of actin-based motility with purified components for bothL. monocytogenesandS. flexnerimotility, and demonstrates that no myosin motor is required. ArticleCASPubMed Google Scholar
Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int. Rev. Cytol.78, 1–125 ( 1982). ArticleCASPubMed Google Scholar
Gerbal, F. et al. Measurement of the elasticity of the actin tail of Listeria monocytogenes. Eur. Biophys. J.29, 134–140 (2000). ArticleCASPubMed Google Scholar
van Oudenaarden, A. & Theriot, J. A. Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nature Cell Biol.1, 493–499 (1999). ArticleCASPubMed Google Scholar
Kuo, S. C. & McGrath, J. L. Steps and fluctuations of Listeria monocytogenes during actin–based motility. (submitted).
Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell84, 723–734 ( 1996). ArticleCASPubMed Google Scholar
Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J.15, 5326– 5335 (1996). ArticlePubMedPubMed Central Google Scholar
Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin- depolymerizing protein N-WASP . Nature391, 93–96 (1998). ArticleCASPubMed Google Scholar
Bear, J. E., Rawls, J. F. & Saxe, C. L., SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol.142, 1325–1335 (1998). ArticleCASPubMedPubMed Central Google Scholar
Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol.8, 1347–1356 (1998). ArticleCASPubMed Google Scholar
Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA96, 3739–3744 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol.9, 555–558 (1999). ArticleCASPubMed Google Scholar
Lin, C. H., Espreafico, E. M., Mooseker, M. S. & Forscher, P. Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron16, 769–782 ( 1996). ArticleCASPubMed Google Scholar
Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct.29, 545–576 (2000). ArticleCASPubMed Google Scholar
Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M. F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol.2, 385–391 ( 2000). ArticleCASPubMed Google Scholar
Goldberg, M. B. & Theriot, J. A. Shigella flexneri surface protein IcsA is sufficient to direct actin- based motility . Proc. Natl Acad. Sci. USA92, 6572– 6576 (1995). ArticleCASPubMedPubMed Central Google Scholar
Mimuro, H. et al. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J. Biol. Chem.275, 28893–28901 (2000). ArticleCASPubMed Google Scholar
Heinzen, R. A., Hayes, S. F., Peacock, M. G. & Hackstadt, T. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect. Immunol.61, 1926–1935 (1993). CAS Google Scholar
Teysseire, N., Chiche-Portiche, C. & Raoult, D. Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res. Microbiol.143, 821–829 ( 1992). ArticleCASPubMed Google Scholar
Heinzen, R. A., Grieshaber, S. S., Van Kirk, L. S. & Devin, C. J. Dynamics of actin-based movement by Rickettsia rickettsii in vero cells . Infect. Immunol.67, 4201– 4207 (1999). CAS Google Scholar
Gouin, E. et al. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci.112, 1697– 1708 (1999). CASPubMed Google Scholar
Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell91 , 511–520 (1997). ArticleCASPubMed Google Scholar
Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol.1, 389–391 (1999). ArticleCASPubMed Google Scholar
Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature378, 636–638 (1995).Demonstrates that a virus moves by actin-based motility in host cells, expanding the realm of this type of motility to another system which has a different shape and possibly a new way to form a polarized actin tail. ArticleCASPubMed Google Scholar
Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature401, 926– 929 (1999). ArticleCASPubMed Google Scholar
Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol.2, 441–448 (2000). ArticleCASPubMed Google Scholar
Ma, L., Cantley, L. C., Janmey, P. A. & Kirschner, M. W. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J. Cell Biol.140, 1125–1136 ( 1998). ArticleCASPubMedPubMed Central Google Scholar
Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell97, 221–231 (1999). ArticleCASPubMed Google Scholar
Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol.1, 72– 74 (1999). ArticleCASPubMed Google Scholar
Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr. Biol.10, 311–320 ( 2000). ArticleCASPubMed Google Scholar
Schafer, D. A., Mooseker, M. S. & Cooper, J. A. Localization of capping protein in chicken epithelial cells by immunofluorescence and biochemical fractionation. J. Cell Biol.118, 335–346 ( 1992). ArticleCASPubMed Google Scholar
Cooper, J. A., Loftus, D. J., Frieden, C., Bryan, J. & Elson, E. L. Localization and mobility of gelsolin in cells. J. Cell Biol.106, 1229– 1240 (1988). ArticleCASPubMed Google Scholar
Rottner, K., Behrendt, B., Small, J. V. & Wehland, J. VASP dynamics during lamellipodia protrusion. Nature Cell Biol.1, 321–322 ( 1999). ArticleCASPubMed Google Scholar
Lazarides, E. & Burridge, K. α–actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell6, 289–298 ( 1975). ArticleCASPubMed Google Scholar