Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain (original) (raw)
References
Crook, N. E., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol.67, 2168–2174 (1993). CASPubMedPubMed Central Google Scholar
Hawkins, C. J., Uren, A. G., Häcker, G., Medcalf, R. L. & Vaux, D. L. Inhibition of interleukin 1β-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc. Natl Acad. Sci. USA93, 13786–13790 (1996). ArticleADSCASPubMedPubMed Central Google Scholar
Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature388, 300–304 (1997). ArticleADSCASPubMed Google Scholar
Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J.16, 6914–6925 (1997). ArticleCASPubMedPubMed Central Google Scholar
Deveraux, Q. L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J.18, 5242–5251 (1999). ArticleCASPubMedPubMed Central Google Scholar
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell102, 33–42 (2000). ArticleCASPubMed Google Scholar
Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell102, 43–53 (2000). ArticleCASPubMed Google Scholar
Srinivasula, S. M. et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem.275, 36152–36157 (2000). ArticleCASPubMed Google Scholar
Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature406, 855–862 (2000). ArticleADSCASPubMed Google Scholar
Tamm, I. et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res.6, 1796–1803 (2000). CASPubMed Google Scholar
Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med.3, 917–217 (1997). ArticleCASPubMed Google Scholar
LaCasse, E. C., Baird, S., Korneluk, R. G. & MacKenzie, A. E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene17, 3247–3259 (1998). ArticlePubMed Google Scholar
Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature401, 818–822 (1999). ArticleADSCASPubMed Google Scholar
Sun, C. et al. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem.275, 33777–33781 (1998). Article Google Scholar
Verdecia, M. A. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Struct. Biol.7, 602–608 (2000). ArticleCASPubMed Google Scholar
Muchmore, S. W. et al. Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol. Cell6, 173–182 (2000). ArticleCASPubMed Google Scholar
Chantalat, L. et al. Crystal structure of human survivin reveals a bow-tie-shaped dimer with two unusual α-helical extensions. Mol. Cell6, 183–189 (2000). ArticleCASPubMed Google Scholar
Kleywegt, G. J. & Jones, T. A. in From First Map to Final Model (eds Bailey, S., Hubbard, R. & Waller, D.) 59–66 (Daresbury Laboratory, Daresbury, UK, 1994). Google Scholar
Vucic, D., Kaiser, W. J. & Miller, L. K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins Hid and Grim. Mol. Cell Biol.18, 3300–3309 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cutforth, T. & Gaul, U. A methionine aminopeptidase and putative regulator of translation initiation is required for cell growth and patterning in Drosophila. Mech. Dev.82, 23–28 (1999). ArticleCASPubMed Google Scholar
Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear magnetic resonance of proteins. Methods Enzymol.239, 349–363 (1994). ArticleCASPubMed Google Scholar
Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR13, 289–302 (1999). ArticleCASPubMed Google Scholar
Stein E. G., Rice, L. M. & Brünger, A. T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. B124, 154–164 (1997). ArticleADS Google Scholar
Nilges, M., Gronenborn, A. M., Brünger, A. T. & Clore, G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng.2, 27–38 (1988). ArticleCASPubMed Google Scholar
Nilges, M., Macias, M. J., O'Donoghue, S. I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: The refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol.269, 408–422 (1997). ArticleCASPubMed Google Scholar
Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR8, 477–486 (1996). ArticleCASPubMed Google Scholar
Carson, M. J. Ribbon models of macromolecules. J. Mol. Graphics5, 103–106 (1987). ArticleCAS Google Scholar