Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain (original) (raw)

References

  1. Crook, N. E., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174 (1993).
    CAS PubMed PubMed Central Google Scholar
  2. Hawkins, C. J., Uren, A. G., Häcker, G., Medcalf, R. L. & Vaux, D. L. Inhibition of interleukin 1β-converting enzyme-mediated apoptosis of mammalian cells by baculovirus IAP. Proc. Natl Acad. Sci. USA 93, 13786–13790 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  3. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).
    Article ADS CAS PubMed Google Scholar
  4. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  5. Deveraux, Q. L. et al. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18, 5242–5251 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  6. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).
    Article CAS PubMed Google Scholar
  7. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).
    Article CAS PubMed Google Scholar
  8. Srinivasula, S. M. et al. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J. Biol. Chem. 275, 36152–36157 (2000).
    Article CAS PubMed Google Scholar
  9. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).
    Article ADS CAS PubMed Google Scholar
  10. Tamm, I. et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796–1803 (2000).
    CAS PubMed Google Scholar
  11. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med. 3, 917–217 (1997).
    Article CAS PubMed Google Scholar
  12. LaCasse, E. C., Baird, S., Korneluk, R. G. & MacKenzie, A. E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247–3259 (1998).
    Article PubMed Google Scholar
  13. Sun, C. et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 401, 818–822 (1999).
    Article ADS CAS PubMed Google Scholar
  14. Sun, C. et al. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275, 33777–33781 (1998).
    Article Google Scholar
  15. Verdecia, M. A. et al. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nature Struct. Biol. 7, 602–608 (2000).
    Article CAS PubMed Google Scholar
  16. Muchmore, S. W. et al. Crystal structure and mutagenic analysis of the inhibitor-of-apoptosis protein survivin. Mol. Cell 6, 173–182 (2000).
    Article CAS PubMed Google Scholar
  17. Chantalat, L. et al. Crystal structure of human survivin reveals a bow-tie-shaped dimer with two unusual α-helical extensions. Mol. Cell 6, 183–189 (2000).
    Article CAS PubMed Google Scholar
  18. Kleywegt, G. J. & Jones, T. A. in From First Map to Final Model (eds Bailey, S., Hubbard, R. & Waller, D.) 59–66 (Daresbury Laboratory, Daresbury, UK, 1994).
    Google Scholar
  19. Vucic, D., Kaiser, W. J. & Miller, L. K. Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins Hid and Grim. Mol. Cell Biol. 18, 3300–3309 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  20. Cutforth, T. & Gaul, U. A methionine aminopeptidase and putative regulator of translation initiation is required for cell growth and patterning in Drosophila. Mech. Dev. 82, 23–28 (1999).
    Article CAS PubMed Google Scholar
  21. Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear magnetic resonance of proteins. Methods Enzymol. 239, 349–363 (1994).
    Article CAS PubMed Google Scholar
  22. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).
    Article CAS PubMed Google Scholar
  23. Stein E. G., Rice, L. M. & Brünger, A. T. Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. J. Magn. Reson. B 124, 154–164 (1997).
    Article ADS Google Scholar
  24. Nilges, M., Gronenborn, A. M., Brünger, A. T. & Clore, G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 2, 27–38 (1988).
    Article CAS PubMed Google Scholar
  25. Nilges, M., Macias, M. J., O'Donoghue, S. I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: The refined NMR solution structure of the pleckstrin homology domain from β-spectrin. J. Mol. Biol. 269, 408–422 (1997).
    Article CAS PubMed Google Scholar
  26. Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).
    Article CAS PubMed Google Scholar
  27. Carson, M. J. Ribbon models of macromolecules. J. Mol. Graphics 5, 103–106 (1987).
    Article CAS Google Scholar

Download references