Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science274, 1664?1672 (1996). ArticleCASPubMed Google Scholar
Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell94, 555?558 (1998). ArticleCASPubMed Google Scholar
Walworth, N. C. Cell-cycle checkpoint kinases: checking in on the cell cycle. Curr. Opin. Cell Biol.12, 697?704 (2000). ArticleCASPubMed Google Scholar
Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature411, 366?374 (2001). ArticleCASPubMed Google Scholar
Rotman, G. & Shiloh, Y. The ATM gene and protein: possible roles in genome surveillance, checkpoint controls and cellular defence against oxidative stress. Cancer Surv.29, 285?304 (1997). CASPubMed Google Scholar
Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science266, 1821?1828 (1994). ArticleCASPubMed Google Scholar
Hartwell, L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell71, 543?546 (1992). ArticleCASPubMed Google Scholar
Weinert, T. Yeast checkpoint controls and relevance to cancer. Cancer Surv.29, 109?132 (1997). CASPubMed Google Scholar
Dasika, G. K. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene18, 7883?7899 (1999). ArticleCASPubMed Google Scholar
Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev.15, 2177?2196 (2001). ArticleCASPubMed Google Scholar
Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature408, 433?439 (2000). ArticleCASPubMed Google Scholar
Lowndes, N. F. & Murguia, J. R. Sensing and responding to DNA damage. Curr. Opin. Genet. Dev.10, 17?25 (2000). ArticleCASPubMed Google Scholar
Durocher, D. & Jackson, S. P. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr. Opin. Cell Biol.13, 225?231 (2001). ArticleCASPubMed Google Scholar
Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet.27, 247?254 (2001). ArticleCASPubMed Google Scholar
Carr, A. M. Control of cell cycle arrest by the Mec1sc/Rad3sp DNA structure checkpoint pathway. Curr. Opin. Genet. Dev.7, 93?98 (1997). ArticleCASPubMed Google Scholar
Murray, A. W. The genetics of cell cycle checkpoints. Curr. Opin. Genet. Dev.5, 5?11 (1995). ArticleCASPubMed Google Scholar
Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nature Rev. Mol. Cell Biol.1, 179?186 (2000). ArticleCAS Google Scholar
Shiloh, Y. ATM and ATR: networking cellular responses to DNA damage. Curr. Opin. Genet. Dev.11, 71?77 (2001). ArticleCASPubMed Google Scholar
Shiloh, Y. & Rotman, G. Ataxia-telangiectasia and the ATM gene: linking neurodegeneration, immunodeficiency, and cancer to cell cycle checkpoints. J. Clin. Immunol.16, 254?260 (1996). ArticleCASPubMed Google Scholar
Lavin, M. F. & Shiloh, Y. The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol.15, 177?202 (1997). ArticleCASPubMed Google Scholar
Rhind, N. & Russell, P. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J. Cell Sci.113, 3889?3896 (2000). CASPubMedPubMed Central Google Scholar
Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science282, 1893?1897 (1998).The cloning of human and mouseChk2. Together with references23?26, this report shows that mammalian Chk2 is a functional homologue ofS. cerevisiaeRad53 andS. pombecds1, and a downstream effector of ATM. ArticleCASPubMed Google Scholar
Blasina, A. et al. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol.9, 1?10 (1999). ArticleCASPubMed Google Scholar
Brown, A. L. et al. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl Acad. Sci. USA96, 3745?3750 (1999). ArticleCASPubMed Google Scholar
Tominaga, K. et al. Role of human Cds1 (Chk2) kinase in DNA damage checkpoint and its regulation by p53. J. Biol. Chem.274, 31463?31467 (1999). ArticleCASPubMed Google Scholar
Chaturvedi, P. et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene18, 4047?4054 (1999). ArticleCASPubMed Google Scholar
Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science246, 629?634 (1989). ArticleCASPubMed Google Scholar
Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. & Elledge, S. J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev.8, 2401?2415 (1994). ArticleCASPubMed Google Scholar
Murakami, H. & Okayama, H. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature374, 817?819 (1995). ArticleCASPubMed Google Scholar
Guo, Z. & Dunphy, W. G. Response of Xenopus Cds1 in cell-free extracts to DNA templates with double-stranded ends. Mol. Biol. Cell11, 1535?1546 (2000). ArticleCASPubMedPubMed Central Google Scholar
Higashitani, A. et al. Caenorhabditis elegans Chk2-like gene is essential for meiosis but dispensable for DNA repair. FEBS Lett.485, 35?39 (2000). ArticleCASPubMed Google Scholar
Oishi, I. et al. Critical role of Caenorhabditis elegans homologs of Cds1 (Chk2)-related kinases in meiotic recombination. Mol. Cell. Biol.21, 1329?1335 (2001). ArticleCASPubMedPubMed Central Google Scholar
MacQueen, A. J. & Villeneuve, A. M. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev.15, 1674?1687 (2001). ArticleCASPubMedPubMed Central Google Scholar
Oishi, I. et al. A novel Drosophila nuclear protein serine/threonine kinase expressed in the germline during its establishment. Mech. Dev.71, 49?63 (1998). ArticleCASPubMed Google Scholar
Rockmill, B. & Roeder, G. S. A meiosis-specific protein kinase homolog required for chromosome synapsis and recombination. Genes Dev.5, 2392?2404 (1991). ArticleCASPubMed Google Scholar
Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro.Proc. Natl Acad. Sci. USA97, 10389?10394 (2000).This study and references 37 and 38 provide evidence for direct phosphorylation of Chk2 by the ATM and ATR kinasesin vitro. ATM-dependent phosphorylation of threonine 68 was shown to be required for ionizing-radiation-induced Chk2 activation, alsoin vivo. ArticleCASPubMed Google Scholar
Melchionna, R., Chen, X. B., Blasina, A. & McGowan, C. H. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biol.2, 762?765 (2000). ArticleCASPubMed Google Scholar
Ahn, J. Y., Schwarz, J. K., Piwnica-Worms, H. & Canman, C. E. Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res.60, 5934?5936 (2000). CASPubMed Google Scholar
Tanaka, K., Boddy, M. N., Chen, X. B., McGowan, C. H. & Russell, P. Threonine-11, phosphorylated by Rad3 and ATM in vitro, is required for activation of fission yeast checkpoint kinase Cds1. Mol. Cell. Biol.21, 3398?3404 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hofmann, K. & Bucher, P. The FHA domain: a putative nuclear signalling domain found in protein kinases and transcription factors. Trends Biochem. Sci.20, 347?349 (1995). ArticleCASPubMed Google Scholar
Li, J., Lee, G. I., Van Doren, S. R. & Walker, J. C. The FHA domain mediates phosphoprotein interactions. J. Cell Sci.113, 4143?4149 (2000). CASPubMed Google Scholar
Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science281, 272?274 (1998).The original report that identifies a role for the Rad53 FHA2 domain in phosphospecific interactions between Rad9 and Rad53. ArticleCASPubMed Google Scholar
Li, J., Smith, G. P. & Walker, J. C. Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. Proc. Natl Acad. Sci. USA96, 7821?7826 (1999). ArticleCASPubMed Google Scholar
Durocher, D., Henckel, J., Fersht, A. R. & Jackson, S. P. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell4, 387?394 (1999). ArticleCASPubMed Google Scholar
Durocher, D. et al. The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell6, 1169?1182 (2000).A detailedin vitrobinding analysis, which shows that FHA domains have high affinity for phospho-threonine residues. The FHA optimal recognition motif was identified as pTXXD (in which T is threonine, D is aspartic acid and X is any amino acid). ArticleCASPubMed Google Scholar
Lee, C. H. & Chung, J. H. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J. Biol. Chem.276, 30537?30541 (2001).Evidence for an essential role of the Chk2 FHA domain and autophosphorylation of threonines 383 and 387 in the Chk2 activation loop for the full activation of the kinase. ArticleCASPubMed Google Scholar
Gilbert, C. S., Green, C. M. & Lowndes, N. F. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell8, 129?136 (2001).This study proposes an intriguing model of Rad53 activation whereby Mec1/Tel1-dependent phosphorylation of Rad9 converts the latter protein to a scaffold that brings two Rad53 molecules into close proximity. ArticleCASPubMed Google Scholar
Ward, I. M., Wu, X. & Chen, J. Threonine 68 of Chk2 is phosphorylated at sites of DNA strand breaks. J. Biol. Chem. (in the press).
Bork, P. et al. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J.11, 68?76 (1997). ArticleCASPubMed Google Scholar
Kumagai, A. & Dunphy, W. G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell6, 839?849 (2000). ArticleCASPubMed Google Scholar
Alcasabas, A. A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell Biol.3, 958?965 (2001).This study and reference 52 indicates that in yeast, Mrc1 might serve as a replicative counterpart of Rad9 and crb2 in activation of the Rad53 and cds1 kinases, respectively. ArticleCASPubMed Google Scholar
Tanaka, K. & Russell, P. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nature Cell Biol.3, 966?972 (2001). ArticleCASPubMed Google Scholar
Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev.14, 289?300 (2000). CASPubMedPubMed Central Google Scholar
Chehab, N. H., Malikzay, A., Stavridi, E. S. & Halazonetis, T. D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl Acad. Sci. USA96, 13777?13782 (1999).Phosphorylation of the serine 20 residue of p53 was shown to be required for its DNA-damage-dependent stabilization. This was soon followed by identification of Chk1 and Chk2 as the kinases that mediate this phosphorylation (references53and55). ArticleCASPubMed Google Scholar
Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev.14, 278?288 (2000). CASPubMedPubMed Central Google Scholar
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature408, 307?310 (2000). ArticleCASPubMed Google Scholar
Ryan, K. M., Phillips, A. C. & Vousden, K. H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol.13, 332?337 (2001). ArticleCASPubMed Google Scholar
Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science287, 1824?1827 (2000).The first ? and, so far, the only ? report onChk2-knockout mouse embryo fibroblasts, which indicates an involvement of Chk2 in DNA-damage-dependent stabilization of p53 and G2/M checkpoint arrest. ArticleCASPubMed Google Scholar
Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature404, 201?204 (2000).The association with, and phosphorylation of, BRCA1 by Chk2 was identified as an important event in BRCA1-dependent DNA-damage checkpoint function. ArticleCASPubMed Google Scholar
Xu, B., Kim, S. & Kastan, M. B. Involvement of BRCA1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol. Cell. Biol.21, 3445?3450 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev.14, 927?939 (2000). CASPubMedPubMed Central Google Scholar
Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science277, 1497?1501 (1997). ArticleCASPubMed Google Scholar
Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science277, 1501?1505 (1997). ArticleCASPubMed Google Scholar
Zeng, Y. & Piwnica-Worms, H. DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding. Mol. Cell. Biol.19, 7410?7419 (1999). ArticleCASPubMedPubMed Central Google Scholar
Graves, P. R., Lovly, C. M., Uy, G. L. & Piwnica-Worms, H. Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene20, 1839?1851 (2001). ArticleCASPubMed Google Scholar
Falck, J., Mailand, N., Syljuåsen, R. G., Bartek, J. & Lukas, J. The ATM?Chk2?Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature410, 842?847 (2001).Identification of the Chk2-mediated degradation of the Cdc25A phosphatase as a rate-limiting step in the DNA damage intra-S-phase checkpoint in response to ionizing radiation. ArticleCASPubMed Google Scholar
Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science288, 1425?1429 (2000).This report and reference 69 shows a rapid, checkpoint-dependent degradation of Cdc25A in response to ultraviolet radiation and stalled replication, respectively. ArticleCASPubMed Google Scholar
Molinari, M., Mercurio, C., Dominguez, J., Goubin, F. & Draetta, G. F. Human Cdc25A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep.1, 71?79 (2000). ArticleCASPubMedPubMed Central Google Scholar
Petrini, J. H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol.12, 293?296.
Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science281, 1674?1677 (1998). ArticleCASPubMed Google Scholar
Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science281, 1677?1679 (1998). ArticleCASPubMed Google Scholar
Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev.15, 1067?1077 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science286, 1162?1166 (1999). ArticleCASPubMed Google Scholar
Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev.14, 2989?3002 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, S. et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature406, 210?215 (2000). ArticleCASPubMed Google Scholar
Barlow, C. et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl Acad. Sci. USA97, 871?876 (2000). ArticleCASPubMed Google Scholar
Lukas, C. et al. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res.61, 4990?4993 (2001).This study highlights the striking differences between human CHK2 and CHK1, and reports an unexpected correlation of CHK2 expression with tissue biology. CASPubMed Google Scholar
Bartkova, J. et al. Chk2 tumour suppressor protein in human spermatogenesis and testicular germ-cell tumours. Oncogene20, 5897?5902 (2001). ArticleCASPubMed Google Scholar
Flaggs, G. et al. ATM-dependent interactions of a mammalian chk1 homolog with meiotic chromosomes. Curr. Biol.7, 977?986 (1997). ArticleCASPubMed Google Scholar
Kaneko, Y. et al. Cell cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene18, 3673?3681 (1999). ArticleCASPubMed Google Scholar
Bartek, J. & Lukas, J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol. (in the press).
Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li?Fraumeni syndrome. Science286, 2528?2531 (1999).The identification of germline mutations in theCHK2gene in Li?Fraumeni families with wild-type p53, which indicates a role for CHK2 as a tumour suppressor. Subsequently, identical and additional mutations were found in sporadic cancers of different origin (references86?88). ArticleCASPubMed Google Scholar
Sodha, N. et al. Screening for hCHK2 mutations. Science289, 359 (2000).
Haruki, N. et al. Histological type-selective, tumor-predominant expression of a novel CHK1 isoform and infrequent in vivo somatic CHK2 mutation in small cell lung cancer. Cancer Res.60, 4689?4692 (2000). CASPubMed Google Scholar
Hofman, W.-K. et al. Mutation analysis of the DNA-damage checkpoint gene CHK2 in myelodysplastic syndromes and acute myeloid leukemias. Leuk. Res.25, 333?338 (2001). Article Google Scholar
Vahteristo, P. et al. p53, CHK2, and CHK1 genes in Finnish families with Li?Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res.61, 5718?5722 (2001). CASPubMed Google Scholar
Falck, J. et al. Functional impact of concomitant versus alternative defects in the Chk2-p53 tumour suppressor pathway. Oncogene20, 5503?5510 (2001).Evidence that the concomitant mutation ofp53andCHK2might provide a selective advantage to tumour cells. ArticleCASPubMed Google Scholar
Wu, X., Webster, S. R. & Chen, J. Characterization of tumor-associated Chk2 mutations. J. Biol. Chem.276, 2971?2974 (2001). ArticleCASPubMed Google Scholar
Matsuoka, S. et al. Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer. Cancer Res.61, 5362?5365 (2001). CASPubMed Google Scholar
Yao, S. L. et al. Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nature Med.2, 1140?1143 (1996). ArticleCASPubMed Google Scholar
Suganuma, M., Kawabe, T., Hori, H., Funabiki, T. & Okamoto, T. Sensitization of cancer cells to DNA damage-induced cell death by specific cell cycle G2 checkpoint abrogation. Cancer Res.59, 5887?5891 (1999). CASPubMed Google Scholar
Nghiem, P., Park, P. K., Kim, Y. Vaziri, C. & Schreiber, S. L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl Acad. Sci. USA98, 9092?9097 (2001). ArticleCASPubMed Google Scholar
Yu, L. et al. UCN-01 abrogates G2 arrest through a Cdc2-dependent pathway that is associated with inactivation of the Wee1Hu kinase and activation of the Cdc25C phosphatase. J. Biol. Chem.273, 33455?33464 (1998). ArticleCASPubMed Google Scholar
Graves, P. R. et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J. Biol. Chem.275, 5600?5605 (2000). ArticleCASPubMed Google Scholar
Chen, M. S., Hurov, J., White, L. S., Woodford-Thomas, T. & Piwnica-Worms, H. Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol. Cell. Biol.21, 3853?3861 (2001). ArticleCASPubMedPubMed Central Google Scholar