Katoh, S. et al. Elevated chemokine levels in bronchoalveolar lavage fluid of patients with esoinophilic pneumonia. J. Allergy Clin. Immunol.106, 730–736 (2000). ArticleCASPubMed Google Scholar
Butterfield, R. J. et al. Identification of genetic loci controlling the characteristics and severity of brain and spinal cord lesions in experimental allergic encephalomyelitis. Am. J. Pathol.157, 637–645 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ransohoff, R. M. Chemokines and chemokine receptors in model neurological pathologies: molecular and immunocytochemical approaches. Meth. Enzymol.287, 319–348 (1997). ArticleCAS Google Scholar
Karpus, W. J. & Kennedy, K. J. MIP-1α and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Biol.62, 681–687 (1997). ArticleCASPubMed Google Scholar
Glabinski, A. R., Tani, M., Tuohy, V. K., Tuthill, R. J. & Ransohoff, R. M. Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain. Behav. Immunol.9, 315–330 (1995). ArticleCAS Google Scholar
Karpus, W. J. et al. An important role for the chemokine macrophage inflammatory protein-1 α in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol.155, 5003–5010 (1995). CASPubMed Google Scholar
Godiska, R., Chantry, D., Dietsch, G. N. & Gray, P. W. Chemokine expression in murine experimental allergic encephalomyelitis. J. Neuroimmunol.58, 167–176 (1995). ArticleCASPubMed Google Scholar
Ransohoff, R. M. et al. Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J.7, 592–600 (1993). ArticleCASPubMed Google Scholar
Tran, E. H., Kuziel, W. A. & Owens, T. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1α or its CCR5 receptor. Eur J. Immunol.30, 1410–1415 (2000). ArticleCASPubMed Google Scholar
Rottman, J. B. et al. Leukocyte recruitment during onset of experimental allergic encephalomyelitis is CCR1 dependent. Eur J. Immunol.30, 2372–2377 (2000). ArticleCASPubMed Google Scholar
Fife, B. T., Huffnagle, G. B., Kuziel, W. A. & Karpus, W. J. CC Chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med.18, 899–906 (2000). Article Google Scholar
Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L. & Luster, A. D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med.192, 1075–1080 (2000). ArticleCASPubMedPubMed Central Google Scholar
Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest.100, 2552–2561 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature404, 407–411 (2000). ArticleCASPubMed Google Scholar
Miyagishi, R., Kikuchi, S., Fukazawa, T. & Tashiro, K. Macrophage inflammatory protein-1 α in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J. Neurol. Sci.129, 223–227 (1995). ArticleCASPubMed Google Scholar
McManus, C. et al. MCP-1, MCP-2 and MCP-3 expressions in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J. Neuroimmunol.86, 20–29 (1998). ArticleCASPubMed Google Scholar
Simpson, J. et al. Expression of the β-chemokine receptors CCR2, CCR3, and CCR5 in multiple sclerosis central nervous system tissue. J. Neuroimmunol.108, 192–200 (2000). ArticleCASPubMed Google Scholar
Balashov, K.E., Rottman, J.B., Weiner, H.L. & Hancock, W. W. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-α and IP-10 are expressed in demyelinating brain lesions. Proc. Natl Acad. Sci. USA96, 6873–6878 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sorensen, T. L. et al. Expressions of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest.103, 807–815 (1999). ArticleCASPubMedPubMed Central Google Scholar
Iarlori, C. et al. RANTES production and expression is reduced in relapsing-remitting multiple sclerosis patients treated with interferon-β-1b. J. Neuroimmunol.10, 100–107 (2000). Article Google Scholar
Bennetts, B. H., Teutsch, S. M., Buhler, M. M., Heard, R. N. & Stewart, G. J. The CCR5 deletion mutation fails to protect against multiple sclerosis. Hum. Immunol.58, 52–59 (1997). ArticleCASPubMed Google Scholar
Barcellos, L. F. et al. CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics51, 281–288 (2000). ArticleCASPubMed Google Scholar
Hancock, W. W., Gao, W., Faia, K.L. & Csizmadia, V. Chemokines and their receptors in allograft rejection. Curr. Opin. Immunol.12, 511–516 (2000). ArticleCASPubMed Google Scholar
Melter, M., McMahon, G., Fang, J., Ganz, P. & Briscoe, D. M. Current understanding of chemokine involvement in allograft transplantation. Pediatr. Transplant.3, 10–21 (1999). ArticleCASPubMed Google Scholar
Yun, J. J. et al. Early and late chemokine production correlates with cellular recruitment in cardiac allograft vasculopathy. Transplantation69, 2515–2524 (2000). ArticleCASPubMed Google Scholar
Belperio, J. A. et al. The role of the CC chemokine, Rantes, in acute lung allograft rejection. J. Immunol.461, 72 (2000). Google Scholar
Kapoor, A. et al. Intragraft expression of chemokine gene occurs early during acute rejection of allogeneic cardiac grafts. Transpl. Proc.32, 793–795 (2000). ArticleCAS Google Scholar
Watarai, Y. et al. Intraallograft chemokine RNA and protein during rejection of MHC-matched/multiple minor histocompatibility-disparate skin grats. J. Immunol.164, 6027–6033 (2000). ArticleCASPubMed Google Scholar
Kapoor, A. et al. Early expression of interferon-γ inducible protein 10 and monokine induced by interferon-γ in cardiac allografts is mediated by CD8+ T cells. Transplantation69, 1147–1155 (2000). ArticleCASPubMed Google Scholar
Kondo, T. et al. Early increased chemokine expression and prodcution in murine allogeneic skin grafts is mediated by natural killer cells. Tranplantation 69, 969–977 (2000).
Gao, W. et al. Targeting of the chemokine receptor, CCR1, suppresses development of acute and chronic cardiac allograft rejection. J. Clin. Invest.105, 35–44 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells actovated by influenza virus and CD40L drive a potent TH1 polarization. Nature Immunol.1, 305–310 (2000). ArticleCAS Google Scholar
Shimizu, K., Schonbeck, U., Mach, F., Libby, P. & Mitchell, R. N. Host CD40 ligand deficiency induces long-term allograph survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis. J. Immunol.165, 3506–3518 (2000). ArticleCASPubMed Google Scholar
Tellides, G. et al. Interferon-γ elicits arteriosclerosis in the absence of leukocytes. Nature403, 207–211 (2000). ArticleCASPubMed Google Scholar
Berger, E. A., Murphy, P. M. & Farber, J. M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol.17, 657–700 (1999). ArticleCASPubMed Google Scholar
Wu, L. et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature384, 179–183 (1996). ArticleCASPubMed Google Scholar
Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature384, 184–187 (1996). ArticleCASPubMed Google Scholar
Blanpain, C. et al. Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood96, 1638–1645 (2000). CASPubMed Google Scholar
Palacios, E. et al. Parallel evolution of CCR5-null phenotypes in humans and in a natural host of simian immunodeficiency virus. Curr. Biol.8, 943–946 (1998). ArticleCASPubMed Google Scholar
Petrek, M. et al. CC chemokine receptor gene polymorphisms in Czech patients with pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med.162, 1000–1003 (2000). ArticleCASPubMed Google Scholar
Tuttle, D. L., Harrison, J. K., Andres, C., Sleasman, J. W. & Goodenow, M. M. Expressions of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1. J. Virol.72, 4962–4969 (1998). CASPubMedPubMed Central Google Scholar
Baroudy, B. M. A Small Molecule Antagonist of CCR5 that Effectively Inhibits HIV-1 Potential as a Novel Antiretroviral Agent. 7th Conference on Retroviruses and Opportunistic Infections. Abstr. S17 (2000).
Lamkhioued, B. et al. Monocyte chemoattractant protein (MCP)-4 expressions in the airways of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory cytokines. Am. J. Respir. Crit. Care Med.162, 723–732 (2000). ArticleCASPubMed Google Scholar
Sekiya, T. et al. Inducible expresion of a Th2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J. Immunol.165, 2205–2213 (2000). ArticleCASPubMed Google Scholar
Ying, S. et al. Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J. Immunol.163, 6321–6329 (1999). CASPubMed Google Scholar
Gonzalo, J. A. et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J. Exp. Med.188, 157–167 (1998). ArticleCASPubMedPubMed Central Google Scholar
Elsner, J. et al. The CC chemokine antagonist Met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J. Immunol.27, 2892–2898 (1997). ArticleCASPubMed Google Scholar
Dabbagh, K. et al. Local blockage of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J. Immunol.165, 3418–3422 (2000). ArticleCASPubMed Google Scholar
Lloyd, C. M. et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J. Exp. Med.19, 265–274 (2000). Article Google Scholar
Zingoni, A. et al. The chemokine receptor CCR8 is preferentially expressed in TH1 but not TH2 cells. J. Immunol.161, 547–551 (1998). CASPubMed Google Scholar
D'Ambrosio, D. et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J. Immunol.161, 5111–5115 (1998). CASPubMed Google Scholar
Gong, J. H., Ratkay, L. G., Waterfield, J. D. & Clark-Lewis, I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J. Exp. Med.186, 131–137 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ogata, H., Takeya, M., Yoshimura, T., Takagi, K. & Takahashi, K. The role of monocyte chemoattractant protein-1 (MCP-1) in the pathogenesis of collagen-induced arthritis in rats. J. Pathol.182, 106–114 (1997). ArticleCASPubMed Google Scholar
Plater-Zyberk, C., Hoogewerf, A. J., Proudfoot, A. E., Power. C. A. & Wells, T. N. Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunol. Lett.57, 117–120 (1997). ArticleCASPubMed Google Scholar
De Benedetti, F. et al. Interleukin 8 and monocyte chemoattractant protein-1 in patients with juvenile rheumatoid arthritis. Relation to onset types, disease activity, and synovial fluid leukocytes. J. Rheumatol.26, 425–431 (1999). CASPubMed Google Scholar
Al-Mughales, J., Blyth, T. H., Hunter, J. A. & Wilkinson, P. C. The chemoattractant activity of rheumatoid synovial fluid for human lymphocytes is due to multiple cytokines. Clin. Exp. Immunol.106, 230–236 (1996). ArticleCASPubMedPubMed Central Google Scholar
Buckley, C. D. et al. Persistent induction of the chemokine receptor CXCR4 by TGF-β 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol.165, 3423–3429 (2000). ArticleCASPubMed Google Scholar
Konig, A., Krenn, V., Toksoy, A., Gerhard, N. & Gillitzer, R. Mig, GROα and RANTES messenger RNA expression in lining layer, infiltrates and different leucocyte populations of synovial tissue from patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Virchows Arch.436, 449–458 (2000). ArticleCASPubMed Google Scholar
Taylor, P. C. et al. Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor α blockade in patients with rheumatoid arthritis. Arthritis Rheum.43, 38–47 (2000). ArticleCASPubMed Google Scholar
Nanki, T. & Lipskym P. E. Cytokine, activation marker, and chemokine receptor expression by individual CD4+ memory T cells in rheumatoid arthritis synovium. Arthritis Res.2, 415–423 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wedderburn, L. R., Robinson, N., Patel, A., Varsani, H. & Woo, P. Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum.43, 765–774 (2000). ArticleCASPubMed Google Scholar
Qin, S. et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest.101, 746–754 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gomez-Reino, J. J. et al. Association of rheumatoid arthritis with a functional chemokine receptor, CCR5. Arthritis Rheum.42, 989–992 (1999). ArticleCASPubMed Google Scholar
Garred, P. et al. CC chemokine receptor 5 polymorphism in rheumatoid arthritis. J. Rheumatol.25, 1462–1465 (1998). CASPubMed Google Scholar
Virchow, R. Die krankhaften Geschwulste. Dreiβig Vorlesungen, gehalten während des Wintersemesters 1862–1863 an der Universität zu Berlin (Verlag von August Hirschwald, Berlin, 1863). Google Scholar
Bashford, E. F. in Scientific Reports on the Investigations of the ICRF (eds Bashford, E. F., Murray, J. A. & Cramer, W.) (ICRF, London, 1905). Google Scholar
Russell, B. R. G. The nature of resistance to the inoculation of cancer. Sci. Rep. ICRF3, 341–358 (1908). Google Scholar
Bottazzi, B. et al. Regulation of the macrophage content of neoplasms by chemoattractant. Science220, 210–212 (1983). ArticleCASPubMed Google Scholar
Bottazzi, B. et al. Tumor-derived chemotactic factor(s) from human ovarian carcinoma: evidence for a role in the regulation of macrophage content of neoplastic tissues. Int. J. Cancer36, 167–173 (1985). ArticleCASPubMed Google Scholar
Negus, R. P., Stamp, G. W., Hadley, J. & Balkwill, F. R. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol.150, 1723–1734 (1997). CASPubMedPubMed Central Google Scholar
Walter, S., Bottazzi, B., Govoni, D., Colotta, F. & Mantovani, A. Macrophage infiltration and growth of sarcoma clones expressing different amounts of monocyte chemotactic protein/JE. Int. J. Cancer49, 431–435 (1991). ArticleCASPubMed Google Scholar
Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res.56, 4625–4629 (1996). CASPubMed Google Scholar
Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res.6, 3282–3289 (2000). CASPubMed Google Scholar
Kleine-Lowinski, K., Gillitzer, R., Kuhne-Heid, R. & Rosl, F. Monocyte-chemo-attractant-protein-1 (MCP-1)-gene expression in cervical intra-epithelial neoplasias and cervical carcinomas. Int. J. Cancer82, 6–11 (1999). ArticleCASPubMed Google Scholar
Rollins, B. J. & Sunday, M. E. Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol. Cell. Biol.11, 3125–3131 (1991). ArticleCASPubMedPubMed Central Google Scholar
Bottazzi, B., Walter, S., Govoni, D., Colotta, F. & Mantovani, A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J. Immunol.148, 1280–1285 (1992). CASPubMed Google Scholar
Manome, Y. et al. Monocyte chemoattractant protein-1 (MCP-1) gene transduction: an effective tumor vaccine strategy for non-intracranial tumors. Cancer Immunol. Immunother.41, 227–235 (1995). ArticleCASPubMed Google Scholar
Mule, J. J. et al. RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations. Hum. Gene Ther.7, 1545–1553 (1996). ArticleCASPubMed Google Scholar
Laning, J., Kawasaki, H., Tanaka, E., Luo, Y. & Dorf, M. E. Inhibition of in vivo tumor growth by the β chemokine, TCA3. J. Immunol.153, 4625–4635 (1994). CASPubMed Google Scholar
Fushimi, T., Kojima, A., Moore, M. A. & Crystal, R. G. Macrophage inflammatory protein 3α transgene attracts dendritic cells to established murine tumors and suppresses tumor growth. J. Clin. Invest.105, 1383–1393 (2000). ArticleCASPubMedPubMed Central Google Scholar
Vicari, A. P. et al. Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J. Immunol.165, 1992–2000 (2000). ArticleCASPubMed Google Scholar
Luster, A. D. & Leder, P. IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. J. Exp. Med.178, 1057–1065 (1993). ArticleCASPubMed Google Scholar
Dilloo, D. et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nature Med.2, 1090–1095 (1996). ArticleCASPubMed Google Scholar
Strieter, R. M. et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem.270, 27348–27357 (1995). ArticleCASPubMed Google Scholar
Arenberg, D. A. et al. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. J. Clin. Invest.97, 2792–2802 (1996). ArticleCASPubMedPubMed Central Google Scholar
Smith, D.R., et al. Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J. Exp. Med.179, 1409–1415 (1994). ArticleCASPubMed Google Scholar
Richmond, A. et al. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to β-thromboglobulin. EMBO J.7, 2025–2033 (1988). ArticleCASPubMedPubMed Central Google Scholar
Takamori, H., Oades, Z. G., Hoch, O. C., Burger, M. & Schraufstatter, I. U. Autocrine growth effect of IL-8 and GROα on a human pancreatic cancer cell line, Capan-1. Pancreas21, 52–56 (2000). ArticleCASPubMed Google Scholar
Wang, J. et al. Interleukin-8 inhibits non-small cell lung cancer proliferation: a possible role for regulation of tumor growth by autocrine and paracrine pathways. J. Interferon Cytok. Res.16, 53–60 (1996). ArticleCAS Google Scholar
Jordan, N. J. et al. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J. Clin. Invest.104, 1061–1069 (1999). ArticleCASPubMedPubMed Central Google Scholar
Murdoch, C., Monk, P. N. & Finn, A. Functional expression of chemokine receptor CXCR4 on human epithelial cells. Immunology98, 36–41 (1999). ArticleCASPubMedPubMed Central Google Scholar
Oyamada, H. et al. CCR3 mRNA expression in bronchial epithelial cells and various cells in allergic inflammation. Int. Arch. Allergy Immunol.120, S45–S47 (1999). Article Google Scholar
Kol, A. & Libby, P. Molecular mediators of arterial inflammation: a role for microbial products? Am. Heart J.138, 450–452 (1999). Article Google Scholar
Streblow, D. N. et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell99, 511–520 (1999). ArticleCASPubMed Google Scholar
Molestina, R. E., Dean, D., Miller, R. D., Ramirez, J. A. & Summersgill, J. T. Characterization of a strain of Chlamydia pneumoniae isolated from a coronary atheroma by analysis of the omp1 gene and biological activity in human endothelial cells. Infect. Immun.66, 1370–1376 (1998). CASPubMedPubMed Central Google Scholar
Boisvert, W. A., Curtiss, L. K. & Terkeltaub, R. A. Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol. Res.21, 129–137 (2000). ArticleCASPubMed Google Scholar
Abi-Younes, S. et al. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ. Res.86, 131–138 (2000). ArticleCASPubMed Google Scholar
Mach, F. et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Invest.104, 1041–1050 (1999). ArticleCASPubMedPubMed Central Google Scholar
Haque, N. S. et al. CC chemokine I-309 is the principal monocyte chemoattractant induced by apolipoprotein(a) in human vascular endothelial cells. Circulation102, 786–792 (2000). ArticleCASPubMed Google Scholar
Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell2, 275–281 (1998). ArticleCASPubMed Google Scholar
Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest.103, 773–778 (1999). ArticleCASPubMedPubMed Central Google Scholar
Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature394, 894–897 (1998). ArticleCASPubMed Google Scholar
Dawson, T. C., Kuziel, W. A., Osahar, T. A. & Maeda, N. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis143, 205–211 (1999). ArticleCASPubMed Google Scholar
Bush, E. et al. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension36, 360–363 (2000). ArticleCASPubMed Google Scholar
Zhou, X., Paulsson, G., Stemme, S. & Hansson, G. K. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J. Clin. Invest.101, 1717–1725 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nelken, N. A., Coughlin, S. R., Gordon, D. & Wilcox, J. N. Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest.88, 1121–1127 (1991). ArticleCASPubMedPubMed Central Google Scholar
Yla-Herttuala, S. et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl Acad. Sci. USA88, 5252–5256 (1991). ArticleCASPubMedPubMed Central Google Scholar
Wilcox, J. N., Nelken, N. A., Coughlin, S. R., Gordon, D. & Schall, T. J. Local expression of inflammatory cytokines in human atherosclerotic plaques. J. Atheroscler. Thromb.1, S10–S13 (1994). ArticlePubMed Google Scholar
Haley, K. J. et al. Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation102, 2185–2189 (2000). ArticleCASPubMed Google Scholar
Schecter, A. D. et al. Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J. Biol. Chem.272, 28568–28573 (1997). ArticleCASPubMed Google Scholar
Ortego, M. et al. Atorvastatin reduces NF-κB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis147, 253–261 (1999). ArticleCASPubMed Google Scholar
Romano, M. et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab. Invest.80, 1095–1100 (2000). ArticleCASPubMed Google Scholar
Egashira, K. et al. Anti-monocyte chemoattractant protein-1 gene therapy inhibits vascular remodeling in rats: blockade of MCP-1 activity after intramuscular transfer of a mutant gene inhibits vascular remodeling induced by chronic blockade of NO synthesis. FASEB J14, 1974–1978 (2000). ArticleCASPubMed Google Scholar