Large-scale analysis of the yeast proteome by multidimensional protein identification technology (original) (raw)

References

  1. Lockhart, D.J. & Winzeler, E.A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).
    Article CAS Google Scholar
  2. Kawamoto, S., Matsumoto, Y., Mizuno, K., Okubo, K. & Matsubara, K. Expression profiles of active genes in human and mouse livers. Gene 174, 151–158 (1996).
    Article CAS Google Scholar
  3. Anderson, L. & Seilhamer, J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537 (1997).
    Article CAS Google Scholar
  4. Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S. & Garrels, J.I. A sampling of the yeast proteome. Mol. Cell. Biol. 19, 7357–7368 (1999).
    Article CAS Google Scholar
  5. Gygi, S.P., Rochon, Y., Franza, B.R. & Aebersold, R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730 (1999).
    Article CAS Google Scholar
  6. Hatizmanikatis, V. & Lee, K.H. Dynamical analysis of gene networks requires both mRNA and protein expression information. Metabol. Eng. 1, 275–281 (1999).
    Article Google Scholar
  7. Hatzimanikatis, V., Choe, L.H. & Lee, K.H. Proteomics: theoretical and experimental considerations. Biotechnol. Prog. 15, 312–318 (1999).
    Article CAS Google Scholar
  8. Hanash, S.M. Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients: current status. Electrophoresis 21, 1202–1209 (2000).
    Article CAS Google Scholar
  9. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000).
    Article CAS Google Scholar
  10. Washburn, M.P. & Yates, J.R. Analysis of the microbial proteome. Curr. Opin. Microbiol. 3, 292–297 (2000).
    Article CAS Google Scholar
  11. Langen, H. et al. Two-dimensional map of the proteome of Haemophilus influenzae. Electrophoresis 21, 411–429 (2000).
    Article CAS Google Scholar
  12. Oh-Ishi, M., Satoh, M. & Maeda, T. Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins. Electrophoresis 21, 1653–1669 (2000).
    Article CAS Google Scholar
  13. Corthals, G.L., Wasinger, V.C., Hochstrasser, D.F. & Sanchez, J.C. The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21, 1104–1115 (2000).
    Article CAS Google Scholar
  14. Fountoulakis, M., Takacs, M.F., Berndt, P., Langen, H. & Takacs, B. Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatography. Electrophoresis 20, 2181–2195 (1999).
    Article CAS Google Scholar
  15. Fountoulakis, M., Takacs, M.F. & Takacs, B. Enrichment of low-copy-number gene products by hydrophobic interaction chromatography. J. Chromatogr. A 833, 157–168 (1999).
    Article CAS Google Scholar
  16. Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y. & Aebersold, R. Evaluation of two-dimensional electrophoresis-based proteome analysis. Proc. Natl. Acad. Sci. USA 97, 9390–9395 (2000).
    Article CAS Google Scholar
  17. Molloy, M.P. Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. Anal. Biochem. 280, 1–10 (2000).
    Article CAS Google Scholar
  18. Santoni, V., Molloy, M. & Rabilloud, T. Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–70 (2000).
    Article CAS Google Scholar
  19. Link, A.J. et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682 (1999).
    Article CAS Google Scholar
  20. McCormack, A.L. et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal. Chem. 69, 767–776 (1997).
    Article CAS Google Scholar
  21. Eng, J.K., McCormack, A.L. & Yates, J.R.I. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).
    Article CAS Google Scholar
  22. Giddings, J.C. Concepts and comparisons in multidimensional chromatography. J. High Res. Chromatogr. 10, 319–323 (1987).
    Article CAS Google Scholar
  23. Washburn, M.P. & Yates, J.R. Novel methods of proteome analysis: multidimensional chromatography and mass spectrometry. Proteomics: A Current Trends Supplement, 28–32 (2000).
  24. Mewes, H.W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000).
    Article CAS Google Scholar
  25. Sharp, P.M. & Li, W.H. The Codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987).
    Article CAS Google Scholar
  26. Peterson, C.L. & Workman, J.L. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192 (2000).
    Article CAS Google Scholar
  27. Cairns, B.R., Kim, Y.J., Sayre, M.H., Laurent, B.C. & Kornberg, R.D. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91, 1950–1954 (1994).
    Article CAS Google Scholar
  28. Culotta, V.C. et al. The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23469–23472 (1997).
    Article CAS Google Scholar
  29. Liu, Q. et al. Site-directed mutagenesis of the yeast V-ATPase A subunit. J. Biol. Chem. 272, 11750–11756 (1997).
    Article CAS Google Scholar
  30. Lee, B.N. & Elion, E.A. The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc. Natl. Acad. Sci. USA 96, 12679–12684 (1999).
    Article CAS Google Scholar
  31. Sprague, G.F. Jr., Control of MAP kinase signaling specificity or how not to go HOG wild. Genes Dev. 12, 2817–2820 (1998).
    Article CAS Google Scholar
  32. Perrot, M. et al. Two-dimensional gel protein database of Saccharomyces cerevisiae (update 1999). Electrophoresis 20, 2280–2298 (1999).
    Article CAS Google Scholar
  33. Costanzo, M.C. et al. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res. 28, 73–76 (2000).
    Article CAS Google Scholar
  34. Klein, P., Kanehisa, M. & DeLisi, C. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 815, 468–476 (1985).
    Article CAS Google Scholar
  35. Goffeau, A., Nakai, K., Slonimski, P., Risler, J.L. & Slominski, P. The membrane proteins encoded by yeast chromosome III genes. FEBS Lett. 325, 112–117 (1993).
    Article CAS Google Scholar
  36. Ambesi, A., Miranda, M., Petrov, V.V. & Slayman, C.W. Biogenesis and function of the yeast plasma-membrane H(+)-ATPase. J. Exp. Biol. 203, 155–160 (2000).
    CAS PubMed Google Scholar
  37. Auer, M., Scarborough, G.A. & Kuhlbrandt, W. Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature 392, 840–843 (1998).
    Article CAS Google Scholar
  38. Zhang, P., Toyoshima, C., Yonekura, K., Green, N.M. & Stokes, D.L. Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature 392, 835–839 (1998).
    Article CAS Google Scholar
  39. Kuhlbrandt, W., Auer, M. & Scarborough, G.A. Structure of the P-type ATPases. Curr. Opin. Struct. Biol. 8, 510–516 (1998).
    Article CAS Google Scholar
  40. McIntosh, D.B. Portrait of a P-type pump. Nat. Struct. Biol. 7, 532–535 (2000).
    Article CAS Google Scholar
  41. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405, 647–655 (2000).
    Article CAS Google Scholar
  42. Shevchenko, A. et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. USA 93, 14440–14445 (1996).
    Article CAS Google Scholar
  43. Garrels, J.I. et al. Proteome studies of Saccharomyces cerevisiae: identification and characterization of abundant proteins. Electrophoresis 18, 1347–1360 (1997).
    Article CAS Google Scholar
  44. Nilsson, C.L. & Davidsson P. New separation tools for comprehensive studies of protein expression by mass spectrometry. Mass Spectrom. Rev. 19, 390–397 (2000).
    Article CAS Google Scholar
  45. Molloy, M.P. et al. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 267, 2871–2881 (2000).
    Article CAS Google Scholar
  46. Pasa-Tolic, L. et al. High throughput proteome-wide precision measurements of protein expression using mass spectrometry. J. Am. Chem. Soc. 121, 7949–7950 (1999).
    Article CAS Google Scholar
  47. Oda, Y., Huang, K., Cross, F.R., Cowburn, D. & Chait, B.T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596 (1999).
    Article CAS Google Scholar
  48. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).
    Article CAS Google Scholar
  49. Münchbach, M., Quadroni, M., Miotto, G. & James, P. Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal. Chem. 72, 4047–4057 (2000).
    Article Google Scholar
  50. Jones, E.W. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 194, 428–453 (1991).
    Article CAS Google Scholar
  51. Gatlin, C.L., Kleemann, G.R., Hays, L.G., Link, A.J. & Yates, J.R. Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal. Biochem. 263, 93–101 (1998).
    Article CAS Google Scholar
  52. Aitken, A., Geisow, M.J., Findlay, J.B.C., Holmes, C. & Yarwood, A. Peptide preparation and characterization. In Protein sequencing: a practical approach (eds Findlay, J.B.C. & Geisow, M.J.) 43–68 (IRL Press, New York, NY; 1989).
    Google Scholar

Download references