Regulation of microglial activation in stroke (original) (raw)
Perego C, Fumagalli S, De Simoni MG . Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation 2011; 8: 174. ArticleCASPubMedPubMed Central Google Scholar
Gulyas B, Toth M, Schain M, Airaksinen A, Vas A, Kostulas K, et al. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: a PET study with the TSPO molecular imaging biomarker [11C]vinpocetine. J Neurol Sci 2012; 320: 110–7. ArticleCASPubMed Google Scholar
Perego C, Fumagalli S, De Simoni MG . Three-dimensional confocal analysis of microglia/macrophage markers of polarization in experimental brain injury. J Vis Exp 2013. Doi: 10.3791/50605.
Kreutzberg GW . Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19: 312–8. ArticleCASPubMed Google Scholar
Perry VH, Nicoll JA, Holmes C . Microglia in neurodegenerative disease. Nat Rev Neurol 2010; 6: 193–201. ArticlePubMed Google Scholar
Chan WY, Kohsaka S, Rezaie P . The origin and cell lineage of microglia: new concepts. Brain Res Rev 2007; 53: 344–54. ArticleCASPubMed Google Scholar
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A . Physiology of microglia. Physiol Rev 2011; 91: 461–553. ArticleCASPubMed Google Scholar
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 8: 752–8. ArticleCASPubMed Google Scholar
Nimmerjahn A, Kirchhoff F, Helmchen F . Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 1314–8. ArticleCASPubMed Google Scholar
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74: 691–705. ArticleCASPubMedPubMed Central Google Scholar
Paolicelli RC, Gross CT . Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol 2011; 7: 77–83. ArticlePubMed Google Scholar
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330: 841–5. ArticleCASPubMedPubMed Central Google Scholar
Patel AR, Ritzel R, McCullough LD, Liu F . Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 2013; 5: 73–90. PubMedPubMed Central Google Scholar
Galea J, Cruickshank G, Teeling JL, Boche D, Garland P, Perry VH, et al. The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem 2012; 121: 785–92. ArticleCASPubMedPubMed Central Google Scholar
Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012; 43: 3063–70. ArticleCASPubMed Google Scholar
Nathan CF, Murray HW, Wiebe ME, Rubin BY . Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983; 158: 670–89. ArticleCASPubMed Google Scholar
Martinez FO, Helming L, Gordon S . Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009; 27: 451–83. ArticleCASPubMed Google Scholar
Gordon S, Taylor PR . Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953–64. ArticleCASPubMed Google Scholar
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM . M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164: 6166–73. ArticleCASPubMed Google Scholar
Varnum MM, Ikezu T . The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain. Arch Immunol Ther Exp (Warsz) 2012; 60: 251–66. ArticleCAS Google Scholar
Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, et al. Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 2008; 28: 11650–61. ArticleCASPubMedPubMed Central Google Scholar
Perry VH, Teeling J . Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 2013; 35: 601–12. ArticleCASPubMedPubMed Central Google Scholar
Lehnardt S . Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 2010; 58: 253–63. PubMed Google Scholar
Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 2005; 175: 4320–30. ArticleCASPubMed Google Scholar
Henn A, Kirner S, Leist M . TLR2 hypersensitivity of astrocytes as functional consequence of previous inflammatory episodes. J Immunol 2011; 186: 3237–47. ArticleCASPubMed Google Scholar
Phulwani NK, Esen N, Syed MM, Kielian T . TLR2 expression in astrocytes is induced by TNF-alpha- and NF-kappa B-dependent pathways. J Immunol 2008; 181: 3841–9. ArticleCASPubMed Google Scholar
Goethals S, Ydens E, Timmerman V, Janssens S . Toll-like receptor expression in the peripheral nerve. Glia 2010; 58: 1701–9. ArticlePubMed Google Scholar
Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 2007; 104: 13798–803. ArticleCASPubMedPubMed Central Google Scholar
Olson JK, Miller SD . Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 2004; 173: 3916–24. ArticleCASPubMed Google Scholar
Kopp E, Medzhitov R . Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 2003; 15: 396–401. ArticleCASPubMed Google Scholar
Beutler B . Inferences, questions and possibilities in Toll-like receptor signalling. Nature 2004; 430: 257–63. ArticleCASPubMed Google Scholar
Yamamoto M, Takeda K, Akira S . TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 2004; 40: 861–8. ArticleCASPubMed Google Scholar
Lim H, Kim D, Lee SJ . Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J Biol Chem 2013; 288: 7572–9. ArticleCASPubMedPubMed Central Google Scholar
Lv M, Liu Y, Zhang J, Sun L, Liu Z, Zhang S, et al. Roles of inflammation response in microglia cell through toll-like receptors 2/interleukin-23/interleukin-17 pathway in cerebral ischemia/reperfusion injury. Neuroscience 2011; 176: 162–72. ArticleCASPubMed Google Scholar
Stirling DP, Cummins K, Mishra M, Teo W, Yong VW, Stys P . Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. Brain 2014; 137: 707–23. ArticlePubMed Google Scholar
Jiang R, Ye J, Zhu B, Song Y, Chen H, Cao S . Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J Immunol Res 2014; 2014: 787023. ArticlePubMedPubMed CentralCAS Google Scholar
Jack CS, Arbour N, Blain M, Meier UC, Prat A, Antel JP . Th1 polarization of CD4+ T cells by Toll-like receptor 3-activated human microglia. J Neuropathol Exp Neurol 2007; 66: 848–59. ArticleCASPubMed Google Scholar
Jung DY, Lee H, Jung BY, Ock J, Lee MS, Lee WH, et al. TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia: a critical role of IFN-beta as a decision maker. J Immunol 2005; 174: 6467–76. ArticleCASPubMed Google Scholar
Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, et al. TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 2007; 359: 574–9. ArticleCASPubMed Google Scholar
Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ . Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 2007; 353: 509–14. ArticleCASPubMed Google Scholar
Hua F, Ma J, Ha T, Kelley JL, Kao RL, Schweitzer JB, et al. Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res 2009; 1262: 100–8. ArticleCASPubMedPubMed Central Google Scholar
Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM . TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 2008; 31: 33–40. ArticleCASPubMed Google Scholar
Zhu J, Qu C, Lu X, Zhang S . Activation of microglia by histamine and substance P. Cell Physiol Biochem 2014; 34: 768–80. ArticleCASPubMed Google Scholar
Pannell M, Szulzewsky F, Matyash V, Wolf SA, Kettenmann H . The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-gamma, and IL-4. Glia 2014; 62: 667–79. ArticlePubMed Google Scholar
Keir ME, Butte MJ, Freeman GJ, Sharpe AH . PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677–704. ArticleCASPubMed Google Scholar
Okazaki T, Honjo T . The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 2006; 27: 195–201. ArticleCASPubMed Google Scholar
Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003; 198: 71–8. ArticleCASPubMedPubMed Central Google Scholar
Yao AH, Liu FF, Chen K, Tang L, Liu L, Zhang K, et al. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurotherapeutics 2014; 11: 636–50. ArticleCASPubMedPubMed Central Google Scholar
Kjeldsen L, Cowland JB, Borregaard N . Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 2000; 1482: 272–83. ArticleCASPubMed Google Scholar
Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC, Kung AL, et al. Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A 2009; 106: 3913–8. ArticleCASPubMedPubMed Central Google Scholar
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 2004; 432: 917–21. ArticleCASPubMed Google Scholar
Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M, Kjeldsen L . Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 1996; 38: 414–20. ArticleCASPubMedPubMed Central Google Scholar
Jang E, Lee S, Kim JH, Kim JH, Seo JW, Lee WH, et al. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J 2013; 27: 1176–90. ArticleCASPubMed Google Scholar
Han Q, Liu S, Li Z, Hu F, Zhang Q, Zhou M, et al. DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia. Brain Res 2014; 1542: 176–85. ArticleCASPubMed Google Scholar
Zhou XM, Cao YJ, Ao GZ, Hu LF, Liu H, Wu J, et al. CaMKK beta-dependent activation of amp-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal 2014; 21: 1741–58. ArticleCASPubMedPubMed Central Google Scholar
Veremeyko T, Siddiqui S, Sotnikov I, Yung A, Ponomarev ED . IL-4/IL-13-dependent and independent expression of miR-124 and its contribution to M2 phenotype of monocytic cells in normal conditions and during allergic inflammation. PLoS One 2013; 8: e81774. ArticlePubMedPubMed CentralCAS Google Scholar
Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, et al. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 2013; 44: 1706–13. ArticleCASPubMed Google Scholar
Jadhav SP, Kamath SP, Choolani M, Lu J, Dheen ST . microRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. J Neurochem 2014; 130: 388–401. ArticleCASPubMed Google Scholar
Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, et al. N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol 2012; 278: 84–90. ArticleCASPubMed Google Scholar
Wei Z, Chigurupati S, Arumugam TV, Jo DG, Li H, Chan SL . Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke 2011; 42: 2589–94. ArticleCASPubMed Google Scholar
Yin J, Li H, Feng C, Zuo Z . Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection in male rats. CNS Neurol Disord Drug Targets 2014; 13: 718–32. ArticleCASPubMed Google Scholar
Escalante CR, Yie J, Thanos D, Aggarwal AK . Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 1998; 391: 103–6. ArticleCASPubMed Google Scholar
Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, et al. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A 2006; 103: 15136–41. ArticleCASPubMedPubMed Central Google Scholar
Elser B, Lohoff M, Kock S, Giaisi M, Kirchhoff S, Krammer PH, et al. IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity 2002; 17: 703–12. ArticleCASPubMed Google Scholar
Wang Y, John R, Chen J, Richardson JA, Shelton JM, Bennett M, et al. IRF-1 promotes inflammation early after ischemic acute kidney injury. J Am Soc Nephrol 2009; 20: 1544–55. ArticleCASPubMedPubMed Central Google Scholar
Iadecola C, Salkowski CA, Zhang F, Aber T, Nagayama M, Vogel SN, et al. The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. J Exp Med 1999; 189: 719–27. ArticleCASPubMedPubMed Central Google Scholar
Alexander M, Forster C, Sugimoto K, Clark HB, Vogel S, Ross ME, et al. Interferon regulatory factor-1 immunoreactivity in neurons and inflammatory cells following ischemic stroke in rodents and humans. Acta Neuropathol 2003; 105: 420–4. ArticleCASPubMed Google Scholar
Blanco JC, Contursi C, Salkowski CA, DeWitt DL, Ozato K, Vogel SN . Interferon regulatory factor (IRF)-1 and IRF-2 regulate interferon gamma-dependent cyclooxygenase 2 expression. J Exp Med 2000; 191: 2131–44. ArticleCASPubMedPubMed Central Google Scholar
Oshima S, Nakamura T, Namiki S, Okada E, Tsuchiya K, Okamoto R, et al. Interferon regulatory factor 1 (IRF-1) and IRF-2 distinctively up-regulate gene expression and production of interleukin-7 in human intestinal epithelial cells. Mol Cell Biol 2004; 24: 6298–310. ArticleCASPubMedPubMed Central Google Scholar
Cuesta N, Salkowski CA, Thomas KE, Vogel SN . Regulation of lipopolysaccharide sensitivity by IFN regulatory factor-2. J Immunol 2003; 170: 5739–47. ArticleCASPubMed Google Scholar
Han KJ, Jiang L, Shu HB . Regulation of IRF2 transcriptional activity by its sumoylation. Biochem Biophys Res Commun 2008; 372: 772–8. ArticleCASPubMed Google Scholar
Nhu QM, Cuesta N, Vogel SN . Transcriptional regulation of lipopolysaccharide (LPS)-induced Toll-like receptor (TLR) expression in murine macrophages: role of interferon regulatory factors 1 (IRF-1) and 2 (IRF-2). J Endotoxin Res 2006; 12: 285–95. ArticleCASPubMedPubMed Central Google Scholar
Gunthner R, Anders HJ . Interferon-regulatory factors determine macrophage phenotype polarization. Mediators Inflamm 2013; 2013: 731023. ArticlePubMedPubMed CentralCAS Google Scholar
Tarassishin L, Suh HS, Lee SC . Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation 2011; 8: 187. ArticleCASPubMedPubMed Central Google Scholar
Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC . Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 2011; 59: 1911–22. ArticlePubMedPubMed Central Google Scholar
Xu WD, Pan HF, Ye DQ, Xu Y . Targeting IRF4 in autoimmune diseases. Autoimmun Rev 2012; 11: 918–24. ArticleCASPubMed Google Scholar
El Chartouni C, Schwarzfischer L, Rehli M . Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming. Immunobiology 2010; 215: 821–5. ArticleCASPubMed Google Scholar
Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen ED . Interferon regulatory factor 4 regulates obesity-induced inflammation through regulation of adipose tissue macrophage polarization. Diabetes 2013; 62: 3394–403. ArticleCASPubMedPubMed Central Google Scholar
Guo S, Li ZZ, Jiang DS, Lu YY, Liu Y, Gao L, et al. IRF4 is a novel mediator for neuronal survival in ischaemic stroke. Cell Death Differ 2014; 21: 888–903. ArticleCASPubMedPubMed Central Google Scholar
Korczeniewska J, Barnes BJ . The COP9 signalosome interacts with and regulates interferon regulatory factor 5 protein stability. Mol Cell Biol 2013; 33: 1124–38. ArticleCASPubMedPubMed Central Google Scholar
Lawrence T, Natoli G . Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011; 11: 750–61. ArticleCASPubMed Google Scholar
Tanaka T, Murakami K, Bando Y, Yoshida S . Interferon regulatory factor 7 participates in the M1-like microglial polarization switch. Glia 2015; 63: 595–610. ArticlePubMed Google Scholar
Minten C, Terry R, Deffrasnes C, King NJ, Campbell IL . IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 2012; 7: e49851. ArticleCASPubMedPubMed Central Google Scholar
Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, et al. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation 2012; 9: 227. ArticleCASPubMedPubMed Central Google Scholar
Xiang M, Wang L, Guo S, Lu YY, Lei H, Jiang DS, et al. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. J Neurochem 2014; 129: 988–1001. ArticleCASPubMed Google Scholar
Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, et al. IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep 2012; 1: 334–40. ArticleCASPubMedPubMed Central Google Scholar
Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 2012; 13: 642–50. ArticleCASPubMedPubMed Central Google Scholar
Yoshida Y, Yoshimi R, Yoshii H, Kim D, Dey A, Xiong H, et al. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 2014; 40: 187–98. ArticleCASPubMedPubMed Central Google Scholar
Jayadev S, Nesser NK, Hopkins S, Myers SJ, Case A, Lee RJ, et al. Transcription factor p53 influences microglial activation phenotype. Glia 2011; 59: 1402–13. ArticlePubMedPubMed Central Google Scholar
Davenport CM, Sevastou IG, Hooper C, Pocock JM . Inhibiting p53 pathways in microglia attenuates microglial-evoked neurotoxicity following exposure to Alzheimer peptides. J Neurochem 2010; 112: 552–63. ArticleCASPubMed Google Scholar
Tu YF, Lu PJ, Huang CC, Ho CJ, Chou YP . Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain. Stroke 2012; 43: 491–8. ArticleCASPubMed Google Scholar
Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ, et al. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson's disease. Cell Death Differ 2014; 21: 369–80. ArticleCASPubMed Google Scholar
Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010; 11: 936–44. ArticleCASPubMed Google Scholar
Satoh N, Shimatsu A, Himeno A, Sasaki Y, Yamakage H, Yamada K, et al. Unbalanced M1/M2 phenotype of peripheral blood monocytes in obese diabetic patients: effect of pioglitazone. Diabetes Care 2010; 33: e7. ArticlePubMed Google Scholar
Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, et al. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis 2014; 71: 280–91. ArticleCASPubMed Google Scholar
Mou CZ, Liu B, Wang M, Jiang M, Han T . PGC-1-Related Coactivator (PRC) Is an Important Regulator of Microglia M2 Polarization. J Mol Neurosci 2015; 55: 69–75. ArticleCASPubMed Google Scholar
Pan J, Jin JL, Ge HM, Yin KL, Chen X, Han LJ, et al. Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPAR gamma-dependent manner. J Neuroinflammation 2015; 12: 51. ArticlePubMedPubMed CentralCAS Google Scholar
Guo Y, Zhang H, Yang J, Liu S, Bing L, Gao J, et al. Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury. Neuroscience 2013; 238: 1–10. ArticleCASPubMed Google Scholar
Hegyi B, Kornyei Z, Ferenczi S, Fekete R, Kudlik G, Kovacs KJ, et al. Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells. Stem Cells Develop 2014; 23: 2600–12. ArticleCAS Google Scholar
Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, et al. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A 2008; 105: 14638–43. ArticleCASPubMedPubMed Central Google Scholar
Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S, et al. Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 2014; 11: 679–95. ArticleCASPubMedPubMed Central Google Scholar
de Haas AH, van Weering HR, de Jong EK, Boddeke HW, Biber KP . Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 2007; 36: 137–51. ArticleCASPubMedPubMed Central Google Scholar
Yi MH, Zhang E, Kang JW, Shin YN, Byun JY, Oh SH, et al. Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus. Brain Res 2012; 1481: 90–6. ArticleCASPubMed Google Scholar
Shrivastava K, Gonzalez P, Acarin L . The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain. J Comp Neurol 2012; 520: 2657–75. ArticleCASPubMed Google Scholar
Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA . Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav Immun 2013; 34: 86–97. ArticleCASPubMed Google Scholar
Hernangomez M, Mestre L, Correa FG, Loria F, Mecha M, Inigo PM, et al. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 2012; 60: 1437–50. ArticlePubMed Google Scholar
Chitnis T, Imitola J, Wang Y, Elyaman W, Chawla P, Sharuk M, et al. Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am J Pathol 2007; 170: 1695–712. ArticleCASPubMedPubMed Central Google Scholar
Cox FF, Carney D, Miller AM, Lynch MA . CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav Immun 2012; 26: 789–96. ArticleCASPubMed Google Scholar
Maciejewski-Lenoir D, Chen S, Feng L, Maki R, Bacon KB . Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J Immunol 1999; 163: 1628–35. CASPubMed Google Scholar
Tang Z, Gan Y, Liu Q, Yin JX, Shi J, Shi FD . CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 2014; 11: 26. ArticleCASPubMedPubMed Central Google Scholar
Sun JL, Xiao C, Lu B, Zhang J, Yuan XZ, Chen W, et al. CX3CL1/CX3CR1 regulates nerve injury-induced pain hypersensitivity through the ERK5 signaling pathway. J Neurosci Res 2013; 91: 545–53. ArticleCASPubMed Google Scholar
Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 9: 917–24. ArticleCASPubMed Google Scholar
Takahashi K, Rochford CD, Neumann H . Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005; 201: 647–57. ArticleCASPubMedPubMed Central Google Scholar
Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE . Pattern recognition by TREM-2: binding of anionic ligands. J Immunol 2003; 171: 594–9. ArticleCASPubMed Google Scholar
Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci 2015; 35: 3384–96. ArticleCASPubMedPubMed Central Google Scholar
Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann H, et al. Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS One 2013; 8: e52982. ArticleCASPubMedPubMed Central Google Scholar
Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, et al. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 2002; 83: 1309–20. ArticleCASPubMedPubMed Central Google Scholar
Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Panina Bordignon P, et al. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J Neurochem 2009; 110: 284–94. ArticleCASPubMed Google Scholar
Varki A, Angata T . Siglecs--the major subfamily of I-type lectins. Glycobiology 2006; 16: 1R–27R. ArticleCASPubMed Google Scholar
Crocker PR, Paulson JC, Varki A . Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7: 255–66. ArticleCASPubMed Google Scholar
Foussias G, Taylor SM, Yousef GM, Tropak MB, Ordon MH, Diamandis EP . Cloning and molecular characterization of two splice variants of a new putative member of the Siglec-3-like subgroup of Siglecs. Biochem Biophys Res Commun 2001; 284: 887–99. ArticleCASPubMed Google Scholar
Jellusova J, Nitschke L . Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2011; 2: 96. PubMed Google Scholar
Mott RT, Ait-Ghezala G, Town T, Mori T, Vendrame M, Zeng J, et al. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 2004; 46: 369–79. ArticlePubMed Google Scholar
Mu S, Liu B, Ouyang L, Zhan M, Chen S, Wu J, et al. Characteristic changes of astrocyte and microglia in rat striatum induced by 3-NP and MCAO. Neurochem Res 2016; 41: 707–14. ArticleCASPubMed Google Scholar
Rohl C, Lucius R, Sievers J . The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 2007; 1129: 43–52. ArticlePubMedCAS Google Scholar
Siglienti I, Chan A, Kleinschnitz C, Jander S, Toyka KV, Gold R, et al. Downregulation of transforming growth factor-beta2 facilitates inflammation in the central nervous system by reciprocal astrocyte/microglia interactions. J Neuropathol Exp Neurol 2007; 66: 47–56. ArticleCASPubMed Google Scholar
Lana D, Melani A, Pugliese AM, Cipriani S, Nosi D, Pedata F, et al. The neuron-astrocyte-microglia triad in a rat model of chronic cerebral hypoperfusion: protective effect of dipyridamole. Front Aging Neurosci 2014; 6: 322. ArticlePubMedPubMed Central Google Scholar
Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H . Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer's disease. J Neurosci 2016; 36: 577–89. ArticleCASPubMedPubMed Central Google Scholar
Zajicek JP, Wing M, Scolding NJ, Compston DA . Interactions between oligodendrocytes and microglia. A major role for complement and tumour necrosis factor in oligodendrocyte adherence and killing. Brain 1992; 115: 1611–31. ArticlePubMed Google Scholar
Peterson JW, Bo L, Mork S, Chang A, Ransohoff RM, Trapp BD . VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. J Neuropathol Exp Neurol 2002; 61: 539–46. ArticlePubMed Google Scholar
Miller BA, Crum JM, Tovar CA, Ferguson AR, Bresnahan JC, Beattie MS . Developmental stage of oligodendrocytes determines their response to activated microglia in vitro. J Neuroinflammation 2007; 4: 28. ArticlePubMedPubMed CentralCAS Google Scholar
Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 2000; 31: 1735–43. ArticleCASPubMed Google Scholar
Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, et al. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 2014; 40: 131–42. ArticleCASPubMed Google Scholar
Zhu XC, Jiang T, Zhang QQ, Cao L, Tan MS, Wang HF, et al. Chronic metformin preconditioning provides neuroprotection via suppression of NF-kappaB-mediated inflammatory pathway in rats with permanent cerebral ischemia. Mol Neurobiol 2015; 52: 375–85. ArticleCASPubMed Google Scholar
Zieden B, Olsson AG . The role of statins in the prevention of ischemic stroke. Curr Atheroscler Rep 2005; 7: 364–8. ArticleCASPubMed Google Scholar
Churchward MA, Todd KG . Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol Brain 2014; 7: 85. ArticlePubMedPubMed CentralCAS Google Scholar
Jung YS, Park JH, Kim H, Kim SY, Hwang JY, Hong KW, et al. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice. Acta Pharmacol Sin 2016; 37: 1031–44. ArticleCASPubMedPubMed Central Google Scholar
Lopes RS, Cardoso MM, Sampaio AO, Barbosa MS Jr, Souza CC, DA Silva MC, et al. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J Biosci 2016; 41: 381–94. ArticleCASPubMed Google Scholar
Samanta J, Alden T, Gobeske K, Kan L, Kessler JA . Noggin protects against ischemic brain injury in rodents. Stroke 2010; 41: 357–62. ArticleCASPubMed Google Scholar
Shin JA, Lim SM, Jeong SI, Kang JL, Park EM . Noggin improves ischemic brain tissue repair and promotes alternative activation of microglia in mice. Brain Behav Immun 2014; 40: 143–54. ArticleCASPubMed Google Scholar
Yang C, Yu L, Kong L, Ma R, Zhang J, Zhu Q, et al. Pyrroloquinoline quinone (PQQ) inhibits lipopolysaccharide induced inflammation in part via downregulated NF-kappaB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice. PLoS One 2014; 9: e109502. ArticlePubMedPubMed CentralCAS Google Scholar
Huang L, Li G, Feng X, Wang L . 15d-PGJ2 reduced microglia activation and alleviated neurological deficit of ischemic reperfusion in diabetic rat model. Biomed Res Int 2015; 2015: 864509. PubMedPubMed Central Google Scholar
Guglielmetti C, Le Blon D, Santermans E, Salas-Perdomo A, Daans J, De Vocht N, et al. Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia 2016; 64: 2181–200. ArticlePubMed Google Scholar
Gregersen R, Lambertsen K, Finsen B . Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 2000; 20: 53–65. ArticleCASPubMed Google Scholar
Chen Y, Won SJ, Xu Y, Swanson RA . Targeting microglial activation in stroke therapy: pharmacological tools and gender effects. Curr Med Chem 2014; 21: 2146–55. ArticleCASPubMedPubMed Central Google Scholar