- Gorrini C, Harris IS, Mak TW . Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931–947.
Article CAS PubMed Google Scholar
- Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002; 9: 1031–1044.
Article CAS PubMed Google Scholar
- Naik E, Dixit VM . Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 2011; 208: 417–420.
Article CAS PubMed PubMed Central Google Scholar
- Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 2007; 12: 230–238.
Article CAS PubMed PubMed Central Google Scholar
- Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.
Article CAS PubMed PubMed Central Google Scholar
- Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011; 334: 1278–1283.
Article CAS PubMed PubMed Central Google Scholar
- Glasauer A, Chandel NS . Targeting antioxidants for cancer therapy. Biochem Pharmacol 2014; 92: 90–101.
Article CAS PubMed Google Scholar
- Harris IS, Brugge JS . Cancer: the enemy of my enemy is my friend. Nature 2015; 527: 170–171.
Article CAS PubMed Google Scholar
- Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009; 461: 109–113.
Article CAS PubMed PubMed Central Google Scholar
- DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475: 106–109.
Article CAS PubMed PubMed Central Google Scholar
- Jin L, Li D, Alesi GN, Fan J, Kang HB, Lu Z et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 2015; 27: 257–270.
Article CAS PubMed PubMed Central Google Scholar
- Peiris-Pages M, Martinez-Outschoorn UE, Sotgia F, Lisanti MP . Metastasis and oxidative stress: are antioxidants a metabolic driver of progression? Cell Metab 2015; 22: 956–958.
Article CAS PubMed Google Scholar
- Lo Conte M, Lin J, Wilson MA, Carroll KS . A chemical approach for the detection of protein sulfinylation. ACS Chem Biol 2015; 10: 1825–1830.
Article CAS PubMed PubMed Central Google Scholar
- Manda G, Isvoranu G, Comanescu MV, Manea A, Debelec Butuner B, Korkmaz KS . The redox biology network in cancer pathophysiology and therapeutics. Redox Biol 2015; 5: 347–357.
Article CAS PubMed PubMed Central Google Scholar
- Panieri E, Santoro MM . ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 2015; 72: 3281–3303.
Article CAS PubMed Google Scholar
- Lambeth JD . NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4: 181–189.
Article CAS PubMed Google Scholar
- Kussmaul L, Hirst J . The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 2006; 103: 7607–7612.
Article CAS PubMed PubMed Central Google Scholar
- Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD . Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 2012; 287: 27255–27264.
Article CAS PubMed PubMed Central Google Scholar
- Lu J, Holmgren A . The thioredoxin antioxidant system. Free Radic Biol Med 2014; 66: 75–87.
Article CAS PubMed Google Scholar
- Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA . Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 2015; 40: 435–445.
Article CAS PubMed PubMed Central Google Scholar
- Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH . Thioredoxins, glutaredoxins, and peroxiredoxins—molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19: 1539–1605.
Article CAS PubMed PubMed Central Google Scholar
- Lu J, Chew EH, Holmgren A . Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci USA 2007; 104: 12288–12293.
Article CAS PubMed PubMed Central Google Scholar
- Du Y, Zhang H, Zhang X, Lu J, Holmgren A . Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J Biol Chem 2013; 288: 32241–32247.
Article CAS PubMed PubMed Central Google Scholar
- Brautigam L, Jensen LD, Poschmann G, Nystrom S, Bannenberg S, Dreij K et al. Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1. Proc Natl Acad Sci USA 2013; 110: 20057–20062.
Article CAS PubMed PubMed Central Google Scholar
- Zhang H, Du Y, Zhang X, Lu J, Holmgren A . Glutaredoxin 2 reduces both thioredoxin 2 and thioredoxin 1 and protects cells from apoptosis induced by auranofin and 4-hydroxynonenal. Antioxid Redox Signal 2014; 21: 669–681.
Article CAS PubMed PubMed Central Google Scholar
- Peskin AV, Pace PE, Behring JB, Paton LN, Soethoudt M, Bachschmid MM et al. Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin. J Biol Chem 2016; 291: 3053–3062.
Article CAS PubMed Google Scholar
- Rolfs F, Huber M, Gruber F, Bohm F, Pfister HJ, Bochkov VN et al. Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis. Cancer Res 2013; 73: 3460–3469.
Article CAS PubMed Google Scholar
- Chen JW, Dodia C, Feinstein SI, Jain MK, Fisher AB . 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 2000; 275: 28421–28427.
Article CAS PubMed Google Scholar
- Adimora NJ, Jones DP, Kemp ML . A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid Redox Signal 2010; 13: 731–743.
Article CAS PubMed PubMed Central Google Scholar
- Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, Veal EA . Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol Cell 2012; 45: 398–408.
Article CAS PubMed Google Scholar
- Schieber M, Chandel NS . ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24: R453–R462.
Article CAS PubMed PubMed Central Google Scholar
- Al-Mehdi AB, Pastukh VM, Swiger BM, Reed DJ, Patel MR, Bardwell GC et al. Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci Signal 2012; 5 ra47.
Article CAS PubMed PubMed Central Google Scholar
- Chen Y, Azad MB, Gibson SB . Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009; 16: 1040–1052.
Article CAS PubMed Google Scholar
- Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG . Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 2002; 277: 20336–20342.
Article CAS PubMed Google Scholar
- Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB et al. Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 1997; 272: 217–221.
Article CAS PubMed Google Scholar
- Wu Q, Ni X . ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 2015; 16: 13–19.
Article CAS PubMed Google Scholar
- Bielski BH, Arudi RL, Sutherland MW . A study of the reactivity of HO2/O2- with unsaturated fatty acids. J Biol Chem 1983; 258: 4759–4761.
CAS PubMed Google Scholar
- Holmstrom KM, Finkel T . Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 2014; 15: 411–421.
Article CAS PubMed Google Scholar
- Martin KR, Barrett JC . Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 2002; 21: 71–75.
Article CAS PubMed Google Scholar
- Hara-Chikuma M, Watanabe S, Satooka H . Involvement of aquaporin-3 in epidermal growth factor receptor signaling via hydrogen peroxide transport in cancer cells. Biochem Biophys Res Commun 2016; 471: 603–609.
Article CAS PubMed Google Scholar
- Choi J, Park SJ, Jo EJ, Lee HY, Hong S, Kim SJ et al. Hydrogen peroxide inhibits transforming growth factor-beta1-induced cell cycle arrest by promoting Smad3 linker phosphorylation through activation of Akt-ERK1/2-linked signaling pathway. Biochem Biophys Res Commun 2013; 435: 634–639.
Article CAS PubMed Google Scholar
- Juarez JC, Manuia M, Burnett ME, Betancourt O, Boivin B, Shaw DE et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci USA 2008; 105: 7147–7152.
Article CAS PubMed PubMed Central Google Scholar
- Kluckova K, Sticha M, Cerny J, Mracek T, Dong L, Drahota Z et al. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death Dis 2015; 6: e1749.
Article CAS PubMed PubMed Central Google Scholar
- Schenk B, Fulda S . Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 2015; 34: 5796–5806.
Article CAS PubMed Google Scholar
- Shi YL, Feng S, Chen W, Hua ZC, Bian JJ, Yin W . Mitochondrial inhibitor sensitizes non-small-cell lung carcinoma cells to TRAIL-induced apoptosis by reactive oxygen species and Bcl-X(L)/p53-mediated amplification mechanisms. Cell Death Dis 2014; 5: e1579.
Article CAS PubMed PubMed Central Google Scholar
- Hammer A, Ferro M, Tillian HM, Tatzber F, Zollner H, Schauenstein E et al. Effect of oxidative stress by iron on 4-hydroxynonenal formation and proliferative activity in hepatomas of different degrees of differentiation. Free Radic Biol Med 1997; 23: 26–33.
Article CAS PubMed Google Scholar
- Cerbone A, Toaldo C, Laurora S, Briatore F, Pizzimenti S, Dianzani MU et al. 4-Hydroxynonenal and PPARgamma ligands affect proliferation, differentiation, and apoptosis in colon cancer cells. Free Radic Biol Med 2007; 42: 1661–1670.
Article CAS PubMed Google Scholar
- Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PloS ONE 2013; 8: e81162.
Article PubMed PubMed Central Google Scholar
- Itoh T, Terazawa R, Kojima K, Nakane K, Deguchi T, Ando M et al. Cisplatin induces production of reactive oxygen species via NADPH oxidase activation in human prostate cancer cells. Free Radic Res 2011; 45: 1033–1039.
Article CAS PubMed Google Scholar
- Roh JL, Park JY, Kim EH, Jang HJ, Kwon M . Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer. Cancer Lett 2016; 371: 20–29.
Article CAS PubMed Google Scholar
- Yang YJ, Baek JY, Goo J, Shin Y, Park JK, Jang JY et al. Effective killing of cancer cells through ros-mediated mechanisms by AMRI-59 targeting peroxiredoxin I. Antioxid Redox Signal 2015; 24: 453–469.
Article CAS PubMed Google Scholar
- Wason MS, Colon J, Das S, Seal S, Turkson J, Zhao J et al. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine 2013; 9: 558–569.
Article CAS PubMed Google Scholar
- Alajez NM, Shi W, Hui AB, Yue S, Ng R, Lo KW et al. Targeted depletion of BMI1 sensitizes tumor cells to P53-mediated apoptosis in response to radiation therapy. Cell Death Differ 2009; 16: 1469–1479.
Article CAS PubMed Google Scholar
- Singh A, Bodas M, Wakabayashi N, Bunz F, Biswal S . Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid Redox Signal 2010; 13: 1627–1637.
Article CAS PubMed PubMed Central Google Scholar
- Kim YS, Kang MJ, Cho YM . Low production of reactive oxygen species and high DNA repair: mechanism of radioresistance of prostate cancer stem cells. Anticancer Res 2013; 33: 4469–4474.
CAS PubMed Google Scholar
- Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA 2011; 108: 1433–1438.
Article CAS PubMed PubMed Central Google Scholar
- Fuchs-Tarlovsky V . Role of antioxidants in cancer therapy. Nutrition 2013; 29: 15–21.
Article CAS PubMed Google Scholar
- Leon-Gonzalez AJ, Auger C, Schini-Kerth VB . Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol 2015; 98: 371–380.
Article CAS PubMed Google Scholar
- Filomeno M, Bosetti C, Bidoli E, Levi F, Serraino D, Montella M et al. Mediterranean diet and risk of endometrial cancer: a pooled analysis of three Italian case-control studies. Br J Cancer 2015; 112: 1816–1821.
Article CAS PubMed PubMed Central Google Scholar
- Yan B, Stantic M, Zobalova R, Bezawork-Geleta A, Stapelberg M, Stursa J et al. Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 2015; 15: 401.
Article CAS PubMed PubMed Central Google Scholar
- Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015; 27: 211–222.
Article CAS PubMed Google Scholar
- Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 2011; 475: 231–234.
Article CAS PubMed PubMed Central Google Scholar
- Shaw AT, Winslow MM, Magendantz M, Ouyang C, Dowdle J, Subramanian A et al. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc Natl Acad Sci USA 2011; 108: 8773–8778.
Article CAS PubMed PubMed Central Google Scholar
- Dang CV . Links between metabolism and cancer. Genes Dev 2012; 26: 877–890.
Article CAS PubMed PubMed Central Google Scholar
- Sainz RM, Lombo F, Mayo JC . Radical decisions in cancer: redox control of cell growth and death. Cancers 2012; 4: 442–474.
Article CAS PubMed PubMed Central Google Scholar
- Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 2015; 527: 186–191.
Article CAS PubMed PubMed Central Google Scholar
- Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD . Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014; 510: 298–302.
Article CAS PubMed PubMed Central Google Scholar
- Alberghina L, Gaglio D . Redox control of glutamine utilization in cancer. Cell Death Dis 2014; 5: e1561.
Article CAS PubMed PubMed Central Google Scholar
- Jiang P, Du W, Wu M . Regulation of the pentose phosphate pathway in cancer. Protein Cell 2014; 5: 592–602.
Article CAS PubMed PubMed Central Google Scholar
- Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr . Cellular fatty acid metabolism and cancer. Cell Metab 2013; 18: 153–161.
Article CAS PubMed PubMed Central Google Scholar
- Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.
Article CAS PubMed Google Scholar
- Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.
Article CAS PubMed PubMed Central Google Scholar
- Levine AJ, Puzio-Kuter AM . The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330: 1340–1344.
Article CAS PubMed Google Scholar
- Zhang D, Li J, Wang F, Hu J, Wang S, Sun Y . 2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy. Cancer Lett 2014; 355: 176–183.
Article CAS PubMed Google Scholar
- Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.
Article CAS PubMed Google Scholar
- Zhai X, Yang Y, Wan J, Zhu R, Wu Y . Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and increases radiosensitivity in nasopharyngeal carcinoma cells. Oncology Rep 2013; 30: 2983–2991.
Article CAS Google Scholar
- Zhang X, Fryknas M, Hernlund E, Fayad W, De Milito A, Olofsson MH et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun 2014; 5: 3295.
Article CAS PubMed Google Scholar
- Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther 2008; 7: 110–120.
Article CAS PubMed Google Scholar
- Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X . Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 2011; 30: 4297–4306.
Article CAS PubMed Google Scholar
- Godoy A, Ulloa V, Rodriguez F, Reinicke K, Yanez AJ, Garcia Mde L et al. Differential subcellular distribution of glucose transporters GLUT1-6 and GLUT9 in human cancer: ultrastructural localization of GLUT1 and GLUT5 in breast tumor tissues. J Cell Physiol 2006; 207: 614–627.
Article CAS PubMed Google Scholar
- Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR . Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009; 418: 29–37.
Article CAS PubMed Google Scholar
- Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107: 2037–2042.
Article CAS PubMed PubMed Central Google Scholar
- Li J, Csibi A, Yang S, Hoffman GR, Li C, Zhang E et al. Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci USA 2015; 112: E21–E29.
Article CAS PubMed Google Scholar
- Carracedo A, Cantley LC, Pandolfi PP . Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013; 13: 227–232.
Article CAS PubMed PubMed Central Google Scholar
- Jeon SM, Chandel NS, Hay N . AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485: 661–665.
Article CAS PubMed PubMed Central Google Scholar
- Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev 2011; 25: 1041–1051.
Article CAS PubMed PubMed Central Google Scholar
- Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012; 22: 547–560.
Article CAS PubMed PubMed Central Google Scholar
- Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M . Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 2011; 1807: 726–734.
Article CAS PubMed Google Scholar
- Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010; 120: 142–156.
Article CAS PubMed Google Scholar
- Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D . The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 2012; 53: 421–436.
Article CAS PubMed Google Scholar
- Patra KC, Hay N . The pentose phosphate pathway and cancer. Trends Biochem Sci 2014; 39: 347–354.
Article CAS PubMed PubMed Central Google Scholar
- Du W, Jiang P, Mancuso A, Stonestrom A, Brewer MD, Minn AJ et al. TAp73 enhances the pentose phosphate pathway and supports cell proliferation. Nat Cell Biol 2013; 15: 991–1000.
Article CAS PubMed PubMed Central Google Scholar
- D'Alessandro A, Amelio I, Berkers CR, Antonov A, Vousden KH, Melino G et al. Metabolic effect of TAp63alpha: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 2014; 5: 7722–7733.
PubMed PubMed Central Google Scholar
- Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget 2015; 6: 13371–13386.
Article PubMed PubMed Central Google Scholar
- Polimeni M, Voena C, Kopecka J, Riganti C, Pescarmona G, Bosia A et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem J 2011; 439: 141–149.
Article CAS PubMed Google Scholar
- Yin L, Kufe T, Avigan D, Kufe D . Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood 2014; 123: 2997–3006.
Article CAS PubMed PubMed Central Google Scholar
- Sharma PK, Bhardwaj R, Dwarakanath BS, Varshney R . Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes. Cancer Lett 2010; 295: 154–166.
Article CAS PubMed Google Scholar
- Ruiz-Perez MV, Sanchez-Jimenez F, Alonso FJ, Segura JA, Marquez J, Medina MA . Glutamine, glucose and other fuels for cancer. Curr Pharm Des 2014; 20: 2557–2579.
Article CAS PubMed Google Scholar
- Daye D, Wellen KE . Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 2012; 23: 362–369.
Article CAS PubMed Google Scholar
- Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782–18787.
Article CAS PubMed PubMed Central Google Scholar
- Cetinbas N, Daugaard M, Mullen AR, Hajee S, Rotblat B, Lopez A et al. Loss of the tumor suppressor Hace1 leads to ROS-dependent glutamine addiction. Oncogene 2014; 34: 4005–4010.
Article CAS PubMed PubMed Central Google Scholar
- Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013; 496: 101–105.
Article CAS PubMed PubMed Central Google Scholar
- Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110–121.
Article CAS PubMed PubMed Central Google Scholar
- Sato H, Tamba M, Ishii T, Bannai S . Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 1999; 274: 11455–11458.
Article CAS PubMed Google Scholar
- Mates JM, Segura JA, Martin-Rufian M, Campos-Sandoval JA, Alonso FJ, Marquez J . Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr Mol Med 2013; 13: 514–534.
Article CAS PubMed Google Scholar
- Lyssiotis CA, Son J, Cantley LC, Kimmelman AC . Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle 2013; 12: 1987–1988.
Article CAS PubMed PubMed Central Google Scholar
- Hensley CT, Wasti AT, DeBerardinis RJ . Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123: 3678–3684.
Article CAS PubMed PubMed Central Google Scholar
- Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 2015; 125: 2293–2306.
Article PubMed PubMed Central Google Scholar
- Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 2010; 70: 8981–8987.
Article CAS PubMed PubMed Central Google Scholar
- Emadi A, Jun SA, Tsukamoto T, Fathi AT, Minden MD, Dang CV . Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol 2014; 42: 247–251.
Article CAS PubMed Google Scholar
- Goto M, Miwa H, Shikami M, Tsunekawa-Imai N, Suganuma K, Mizuno S et al. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Invest 2014; 32: 241–247.
Article CAS PubMed Google Scholar
- Izaki S, Goto H, Yokota S . Increased chemosensitivity and elevated reactive oxygen species are mediated by glutathione reduction in glutamine deprived neuroblastoma cells. J Cancer Res Clin Oncol 2008; 134: 761–768.
Article CAS PubMed Google Scholar
- Locasale JW . Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 2013; 13: 572–583.
Article CAS PubMed PubMed Central Google Scholar
- DeBerardinis RJ . Serine metabolism: some tumors take the road less traveled. Cell Metab 2011; 14: 285–286.
Article CAS PubMed PubMed Central Google Scholar
- Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G . Serine and glycine metabolism in cancer. Trends Biochem Sci 2014; 39: 191–198.
Article CAS PubMed PubMed Central Google Scholar
- Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515: 431–435.
Article CAS PubMed PubMed Central Google Scholar
- Martinez-Reyes I, Chandel NS . Mitochondrial one-carbon metabolism maintains redox balance during hypoxia. Cancer Discov 2014; 4: 1371–1373.
Article CAS PubMed PubMed Central Google Scholar
- Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Molecular cell 2014; 55: 253–263.
Article CAS PubMed PubMed Central Google Scholar
- Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov 2014; 4: 1406–1417.
Article CAS PubMed PubMed Central Google Scholar
- DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 2015; 47: 1475–1481.
Article CAS PubMed PubMed Central Google Scholar
- Daidone F, Florio R, Rinaldo S, Contestabile R, di Salvo ML, Cutruzzola F et al. In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. Eur J Med Chem 2011; 46: 1616–1621.
Article CAS PubMed Google Scholar
- Handy DE, Loscalzo J . Redox regulation of mitochondrial function. Antioxid Redox Signal 2012; 16: 1323–1367.
Article CAS PubMed PubMed Central Google Scholar
- Finkel T . Signal transduction by mitochondrial oxidants. J Biol Chem 2012; 287: 4434–4440.
Article CAS PubMed Google Scholar
- Han D, Antunes F, Canali R, Rettori D, Cadenas E . Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 2003; 278: 5557–5563.
Article CAS PubMed Google Scholar
- Lustgarten MS, Bhattacharya A, Muller FL, Jang YC, Shimizu T, Shirasawa T et al. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem Biophys Res Commun 2012; 422: 515–521.
Article CAS PubMed PubMed Central Google Scholar
- Murphy MP . Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16: 476–495.
Article CAS PubMed Google Scholar
- Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107: 8788–8793.
Article CAS PubMed PubMed Central Google Scholar
- Smith RA, Murphy MP . Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann NY Acad Sci 2010; 1201: 96–103.
Article CAS PubMed Google Scholar
- Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS et al. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J Biol Chem 2010; 285: 34447–34459.
Article CAS PubMed PubMed Central Google Scholar
- Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 2014; 5: 3128.
Article CAS PubMed Google Scholar
- Lehtinen L, Ketola K, Makela R, Mpindi JP, Viitala M, Kallioniemi O et al. High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion. Oncotarget 2013; 4: 48–63.
Article PubMed Google Scholar
- Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y . Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. Hum Mol Genet 2011; 20: 4605–4616.
Article CAS PubMed PubMed Central Google Scholar
- Sullivan LB, Chandel NS . Mitochondrial reactive oxygen species and cancer. Cancer Metab 2014; 2: 17.
Article PubMed PubMed Central Google Scholar
- Ray PD, Huang BW, Tsuji Y . Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24: 981–990.
Article CAS PubMed PubMed Central Google Scholar
- Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.
Article CAS PubMed PubMed Central Google Scholar
- DeBerardinis RJ, Cheng T . Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010; 29: 313–324.
Article CAS PubMed Google Scholar
- Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012; 481: 385–388.
Article CAS Google Scholar
- Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012; 481: 380–384.
Article CAS Google Scholar
- Woo DK, Green PD, Santos JH, D'Souza AD, Walther Z, Martin WD et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am J Pathol 2012; 180: 24–31.
Article CAS PubMed PubMed Central Google Scholar
- Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 2008; 320: 661–664.
Article CAS PubMed Google Scholar
- Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T et al. A mitochondrial switch promotes tumor metastasis. Cell Rep 2014; 8: 754–766.
Article CAS PubMed Google Scholar
- Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol 2013; 9: 712.
Article CAS PubMed PubMed Central Google Scholar
- Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 2013; 23: 302–315.
Article CAS PubMed PubMed Central Google Scholar
- Vazquez F, Lim JH, Chim H, Bhalla K, Girnun G, Pierce K et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 2013; 23: 287–301.
Article CAS PubMed PubMed Central Google Scholar
- Cheng G, Zielonka J, Dranka BP, McAllister D, Mackinnon AC Jr., Joseph J et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res 2012; 72: 2634–2644.
Article CAS PubMed PubMed Central Google Scholar
- Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.
Article CAS PubMed PubMed Central Google Scholar
- Pollak M . Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment. Nat Med 2014; 20: 591–593.
Article CAS PubMed Google Scholar
- Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA . Metformin prevents tobacco carcinogen—induced lung tumorigenesis. Cancer Prev Res (Phila) 2010; 3: 1066–1076.
Article CAS Google Scholar
- Dowling RJ, Niraula S, Stambolic V, Goodwin PJ . Metformin in cancer: translational challenges. J Mol Endocrinol 2012; 48: R31–R43.
Article CAS PubMed Google Scholar
- Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB, Anso E et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 2014; 3: e02242.
Article PubMed PubMed Central Google Scholar
- Birsoy K, Sabatini DM, Possemato R . Untuning the tumor metabolic machine: Targeting cancer metabolism: a bedside lesson. Nat Med 2012; 18: 1022–1023.
Article CAS PubMed Google Scholar
- Pollak M . The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012; 12: 159–169.
Article CAS PubMed Google Scholar
- Storozhuk Y, Hopmans SN, Sanli T, Barron C, Tsiani E, Cutz JC et al. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br J Cancer 2013; 108: 2021–2032.
Article CAS PubMed PubMed Central Google Scholar
- Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, Struhl K . Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci USA 2014; 111: 10574–10579.
Article CAS PubMed PubMed Central Google Scholar
- Appleyard MV, Murray KE, Coates PJ, Wullschleger S, Bray SE, Kernohan NM et al. Phenformin as prophylaxis and therapy in breast cancer xenografts. Br J Cancer 2012; 106: 1117–1122.
Article CAS PubMed PubMed Central Google Scholar
- Yuan P, Ito K, Perez-Lorenzo R, Del Guzzo C, Lee JH, Shen CH et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci USA 2013; 110: 18226–18231.
Article CAS PubMed PubMed Central Google Scholar
- Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013; 23: 143–158.
Article CAS PubMed PubMed Central Google Scholar
- Fimognari FL, Pastorelli R, Incalzi RA . Phenformin-induced lactic acidosis in an older diabetic patient: a recurrent drama (phenformin and lactic acidosis). Diabetes Care 2006; 29: 950–951.
Article PubMed Google Scholar
- Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 2011; 20: 674–688.
Article CAS PubMed PubMed Central Google Scholar
- Bhardwaj R, Sharma PK, Jadon SP, Varshney R . A combination of 2-deoxy-D-glucose and 6-aminonicotinamide induces cell cycle arrest and apoptosis selectively in irradiated human malignant cells. Tumour Biol 2012; 33: 1021–1030.
Article CAS PubMed Google Scholar
- Alarifi S, Ali D, Alkahtani S, Siddiqui MA, Ali BA . Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Onco Targets Ther 2013; 6: 75–84.
CAS PubMed PubMed Central Google Scholar
- Hanot M, Boivin A, Malesys C, Beuve M, Colliaux A, Foray N et al. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny. PloS ONE 2012; 7: e44367.
Article CAS PubMed PubMed Central Google Scholar
- Bhalla S, Gordon LI, David K, Prachand S, Singh AT, Yang S et al. Glutathione depletion enhances arsenic trioxide-induced apoptosis in lymphoma cells through mitochondrial-independent mechanisms. Br J Haematol 2010; 150: 365–369.
Article CAS PubMed PubMed Central Google Scholar
- Kuo CC, Liu TW, Chen LT, Shiah HS, Wu CM, Cheng YT et al. Combination of arsenic trioxide and BCNU synergistically triggers redox-mediated autophagic cell death in human solid tumors. Free Radic Biol Med 2011; 51: 2195–2209.
Article CAS PubMed Google Scholar
- Verrax J, Beck R, Dejeans N, Glorieux C, Sid B, Pedrosa RC et al. Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress. Anticancer Agents Med Chem 2011; 11: 213–221.
Article CAS PubMed Google Scholar
- Gao M, Monian P, Quadri N, Ramasamy R, Jiang X . Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 2015; 59: 298–308.
Article CAS PubMed PubMed Central Google Scholar
- Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al. Ferroptosis: process and function. Cell Death Differ 2016; 23: 369–379.
Article CAS PubMed PubMed Central Google Scholar
- Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014; 156: 317–331.
Article CAS PubMed PubMed Central Google Scholar
- Yang WS, Stockwell BR . Ferroptosis: death by lipid peroxidation. Trends Cell Biol 2016; 26: 165–176.
Article CAS PubMed Google Scholar
- Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 2014; 3: e02523.
Article PubMed PubMed Central Google Scholar