Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4+ very small embryonic-like stem cells (original) (raw)
Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156. ArticleCAS Google Scholar
Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448: 196–199. ArticleCAS Google Scholar
Matsui Y, Zsebo K, Hogan BLM . Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992; 70: 841–847. ArticleCAS Google Scholar
Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676. ArticleCAS Google Scholar
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448: 318–324. ArticleCAS Google Scholar
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49. ArticleCAS Google Scholar
D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC . Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981. ArticleCAS Google Scholar
Liedtke S, Enczmann Jg, Waclawczyk S, Wernet P, Kogler G . Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 2007; 1: 364–366. ArticleCAS Google Scholar
Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 2007; 1: 403–415. ArticleCAS Google Scholar
Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869. ArticleCAS Google Scholar
Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood - preliminary report. Leukemia 2006; 21: 297–303. Article Google Scholar
Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2005; 20: 18–28. Article Google Scholar
Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardio 2009; 53: 1–9. ArticleCAS Google Scholar
Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009; 40: 1237–1244. ArticleCAS Google Scholar
Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M . A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia 2007; 21: 860–867. ArticleCAS Google Scholar
Reik W, Walter J . Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2: 21–32. ArticleCAS Google Scholar
Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 2003; 100: 12207–12212. ArticleCAS Google Scholar
Horii T, Kimura M, Morita S, Nagao Y, Hatada I . Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells. Stem Cells 2008; 26: 79–88. ArticleCAS Google Scholar
Pannetier Ml, Feil R . Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 2007; 25: 556–562. ArticleCAS Google Scholar
Delaval K, Feil R . Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004; 14: 188–195. ArticleCAS Google Scholar
Lopes S, Lewis A, Hajkova P, Dean W, Oswald J, Forne T et al. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet 2003; 12: 295–305. ArticleCAS Google Scholar
Kobayashi H, Suda C, Abe T, Kohara Y, Ikemura T, Sasaki H . Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs. Cytogenet Genome Res 2006; 113: 130–137. ArticleCAS Google Scholar
Mager J, Montgomery ND, de Villena FP-M, Magnuson T . Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 2003; 33: 502–507. ArticleCAS Google Scholar
Fournier C, Goto Y, Ballestar E, Delaval K, Hever AM, Esteller M et al. Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J 2002; 21: 6560–6570. ArticleCAS Google Scholar
O'Neill LP, VerMilyea MD, Turner BM . Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 2006; 38: 835–841. ArticleCAS Google Scholar
Carr IM, Valleley EMA, Cordery SF, Markham AF, Bonthron DT . Sequence analysis and editing for bisulphite genomic sequencing projects. Nucl Acids Res 2007; 35: e79. Article Google Scholar
Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 2006; 8: 188–194. ArticleCAS Google Scholar
Margueron R, Trojer P, Reinberg D . The key to development: interpreting the histone code? Curr Opin Genet Dev 2005; 15: 163–176. ArticleCAS Google Scholar
Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004; 428: 860–864. ArticleCAS Google Scholar
Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002; 117: 15–23. ArticleCAS Google Scholar
Pant V, Mariano P, Kanduri C, Mattsson A, Lobanenkov V, Heuchel R et al. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev 2003; 17: 586–590. ArticleCAS Google Scholar
Yoon B, Herman H, Hu B, Park YJ, Lindroth A, Bell A et al. Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 2005; 25: 11184–11190. ArticleCAS Google Scholar
Shovlin TC, Durcova-Hills G, Surani A, McLaren A . Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev Biol 2008; 313: 674–681. ArticleCAS Google Scholar
Zhu T-N, He H-J, Kole S, D′Souza T, Agarwal R, Morin PJ et al. Filamin A-mediated down-regulation of the exchange factor Ras-GRF1 correlates with decreased matrix metalloproteinase-9 expression in human melanoma cells. J Biol Chem 2007; 282: 14816–14826. ArticleCAS Google Scholar
Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA . Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 1998; 20: 163–169. ArticleCAS Google Scholar
Chen T, Ueda Y, Dodge JE, Wang Z, Li E . Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003; 23: 5594–5605. ArticleCAS Google Scholar
Bourc'his D, Xu G-L, Lin C-S, Bollman B, Bestor TH . Dnmt3 L and the establishment of maternal genomic imprints. Science 2001; 294: 2536–2539. ArticleCAS Google Scholar
Durcova-Hills G, Tang F, Doody G, Tooze R, Surani MA . Reprogramming primordial germ cells into pluripotent stem cells. PLoS ONE 2008; 3: e3531. Article Google Scholar
Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A . Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev 1997; 11: 3128–3142. ArticleCAS Google Scholar
Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B . Tumour-suppressor activity of H19 RNA. Nature 1993; 365: 764–767. ArticleCAS Google Scholar
Ludwig T, Eggenschwiler J, Fisher P, D'Ercole AJ, Davenport ML, Efstratiadis A . Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality inIgf2 and Igf1r null backgrounds. Dev Biol 1996; 177: 517–535. ArticleCAS Google Scholar
Font de Mora J, Esteban LM, Burks DJ, Nunez A, Garces C, Garcia-Barrado MJ et al. Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. EMBO J 2003; 22: 3039–3049. ArticleCAS Google Scholar
Scandura JM, Boccuni P, Massague J, Nimer SD . Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 2004; 101: 15231–15236. ArticleCAS Google Scholar
Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, Okano T . p57Kip2 is expressed in quiescent mouse bone marrow side population cells. Biochem Biophys Res Commun 2005; 337: 14–21. ArticleCAS Google Scholar