Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development (original) (raw)
Staal FJ, Luis TC, Tiemessen MM . WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 2008; 8: 581–593. ArticleCASPubMed Google Scholar
Barker N, Clevers H . Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 2010; 138: 1681–1696. ArticleCASPubMed Google Scholar
Carmon KS, Gong X, Lin Q, Thomas A, Liu Q . R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 2011; 108: 11452–11457. ArticleCASPubMedPubMed Central Google Scholar
Staal FJ, Sen JM . The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 2008; 38: 1788–1794. ArticleCASPubMedPubMed Central Google Scholar
Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J . Wnt-1 and Wnt-4 regulate thymic cellularity. Eur J Immunol 2002; 32: 967–971. ArticleCASPubMed Google Scholar
Staal FJ, Meeldijk J, Moerer P, Jay P, van de Weerdt BC, Vainio S et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol 2001; 31: 285–293. ArticleCASPubMed Google Scholar
Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414. ArticleCASPubMed Google Scholar
Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C . Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7: 1048–1056. ArticleCASPubMed Google Scholar
Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG et al. Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 2006; 7: 1037–1047. ArticleCASPubMed Google Scholar
Grigoryan T, Wend P, Klaus A, Birchmeier W . Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22: 2308–2341. ArticleCASPubMedPubMed Central Google Scholar
Aoki K, Taketo MM . Tissue-specific transgenic, conditional knockout and knock-in mice of genes in the canonical Wnt signaling pathway. Methods Mol Biol 2008; 468: 307–331. ArticleCASPubMed Google Scholar
Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M et al. Canonical Wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2011; 9: 345–356. ArticleCASPubMed Google Scholar
Kielman MF, Rindapaa M, Gaspar C, van Poppel N, Breukel C, van Leeuwen S et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Genet 2002; 32: 594–605. ArticleCASPubMed Google Scholar
Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 2009; 136: 1136–1147. ArticleCASPubMedPubMed Central Google Scholar
Lane SW, Sykes SM, Al-Shahrour F, Shterental S, Paktinat M, Lo Celso C et al. The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood 2010; 115: 3489–3497. ArticleCASPubMedPubMed Central Google Scholar
Huang J, Zhang Y, Bersenev A, O'Brien WT, Tong W, Emerson SG et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 2009; 119: 3519–3529. CASPubMedPubMed Central Google Scholar
Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541. ArticleCASPubMedPubMed Central Google Scholar
Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med 2004; 199: 221–229. ArticleCASPubMedPubMed Central Google Scholar
Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 2008; 111: 142–149. ArticleCASPubMed Google Scholar
Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F . Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 2008; 111: 160–164. ArticleCASPubMed Google Scholar
Prlic M, Bevan MJ . Cutting Edge: {beta}-Catenin is dispensable for T cell effector differentiation, memory formation, and recall responses. J Immunol 2011; 187: 1542–1546. ArticleCASPubMed Google Scholar
Luis TC, Naber BA, Fibbe WE, van Dongen JJ, Staal FJ . Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 2010; 116: 496–497. ArticleCASPubMed Google Scholar
Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2: 274–283. ArticleCASPubMedPubMed Central Google Scholar
Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 2009; 113: 546–554. ArticleCASPubMed Google Scholar
Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R . Wnt3a-/--like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev 1999; 13: 709–717. ArticleCASPubMedPubMed Central Google Scholar
Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP . Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 1994; 8: 174–189. ArticleCASPubMed Google Scholar
Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R . Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 1998; 8: 11–20. ArticleCASPubMed Google Scholar
Schilham MW, Wilson A, Moerer P, Benaissa-Trouw BJ, Cumano A, Clevers HC . Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 1998; 161: 3984–3991. CASPubMed Google Scholar
Malhotra S, Kincade PW . Canonical Wnt pathway signaling suppresses VCAM-1 expression by marrow stromal and hematopoietic cells. Exp Hematol 2009; 37: 19–30. ArticleCASPubMed Google Scholar
Day TF, Guo X, Garrett-Beal L, Yang Y . Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8: 739–750. ArticleCASPubMed Google Scholar
Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C . Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005; 8: 727–738. ArticleCASPubMed Google Scholar
Rodda SJ, McMahon AP . Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133: 3231–3244. ArticleCASPubMed Google Scholar
Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346: 1513–1521. ArticleCASPubMed Google Scholar
Reya T, O'Riordan M, Okamura R, Devaney E, Willert K, Nusse R et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity 2000; 13: 15–24. ArticleCASPubMed Google Scholar
Louis I, Heinonen KM, Chagraoui J, Vainio S, Sauvageau G, Perreault C . The signaling protein Wnt4 enhances thymopoiesis and expands multipotent hematopoietic progenitors through beta-catenin-independent signaling. Immunity 2008; 29: 57–67. ArticleCASPubMed Google Scholar
Murdoch B, Chadwick K, Martin M, Shojaei F, Shah KV, Gallacher L et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc Natl Acad Sci USA 2003; 100: 3422–3427. ArticleCASPubMedPubMed Central Google Scholar
Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM . Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA 2007; 104: 15436–15441. ArticleCASPubMedPubMed Central Google Scholar
Renstrom J, Istvanffy R, Gauthier K, Shimono A, Mages J, Jardon-Alvarez A et al. Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell 2009; 5: 157–167. ArticlePubMed Google Scholar
Schaniel C, Sirabella D, Qiu J, Niu X, Lemischka IR, Moore KA . Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 2011; 118: 2420–2429. ArticleCASPubMedPubMed Central Google Scholar
Mar BG, Amakye D, Aifantis I, Buonamici S . The controversial role of the Hedgehog pathway in normal and malignant hematopoiesis. Leukemia 2011; 25: 1665–1673. ArticleCASPubMedPubMed Central Google Scholar
Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM . Deletion of beta-catenin impairs T cell development. Nat Immunol 2003; 4: 1177–1182. ArticleCASPubMed Google Scholar
Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA 2006; 103: 3322–3326. ArticleCASPubMedPubMed Central Google Scholar
Baba Y, Garrett KP, Kincade PW . Constitutively active beta-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors. Immunity 2005; 23: 599–609. ArticleCASPubMedPubMed Central Google Scholar
Baba Y, Yokota T, Spits H, Garrett KP, Hayashi S, Kincade PW . Constitutively active beta-catenin promotes expansion of multipotent hematopoietic progenitors in culture. J Immunol 2006; 177: 2294–2303. ArticleCASPubMed Google Scholar
Hudson JE, Zimmermann WH . Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. J Mol Cell Cardiol 2011; 51: 277–279. ArticleCASPubMed Google Scholar
Katoh M . Network of WNT and other regulatory signaling cascades in pluripotent stem cells and cancer stem cells. Curr Pharm Biotechnol 2011; 12: 160–170. ArticleCASPubMed Google Scholar
Malhotra S, Baba Y, Garrett KP, Staal FJ, Gerstein R, Kincade PW . Contrasting responses of lymphoid progenitors to canonical and noncanonical Wnt signals. J Immunol 2008; 181: 3955–3964. ArticleCASPubMed Google Scholar
Dosen G, Tenstad E, Nygren MK, Stubberud H, Funderud S, Rian E . Wnt expression and canonical Wnt signaling in human bone marrow B lymphopoiesis. BMC Immunol 2006; 7: 13. ArticlePubMedPubMed Central Google Scholar
Gaspar C, Fodde R . APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol 2004; 48: 377–386. ArticleCASPubMed Google Scholar
Silva-Vargas V, Lo Celso C, Giangreco A, Ofstad T, Prowse DM, Braun KM et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell 2005; 9: 121–131. ArticleCASPubMed Google Scholar
Fodde R, Smits R, Clevers H . APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1: 55–67. ArticleCASPubMed Google Scholar
Blank U, Karlsson G, Karlsson S . Signaling pathways governing stem-cell fate. Blood 2008; 111: 492–503. ArticleCASPubMed Google Scholar
Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322. ArticleCASPubMed Google Scholar
Trowbridge JJ, Moon RT, Bhatia M . Hematopoietic stem cell biology: too much of a Wnt thing. Nat Immunol 2006; 7: 1021–1023. ArticleCASPubMed Google Scholar
Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16: 3797–3804. ArticleCASPubMedPubMed Central Google Scholar
Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M . Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 2006; 12: 89–98. ArticleCASPubMed Google Scholar
Estrach S, Ambler CA, Lo Celso C, Hozumi K, Watt FM . Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 2006; 133: 4427–4438. ArticleCASPubMed Google Scholar
Bennett LB, Taylor KH, Arthur GL, Rahmatpanah FB, Hooshmand SI, Caldwell CW . Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia. Epigenomics 2010; 2: 53–70. ArticleCASPubMed Google Scholar
Roman-Gomez J, Cordeu L, Agirre X, Jimenez-Velasco A, San Jose-Eneriz E, Garate L et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood 2007; 109: 3462–3469. ArticleCASPubMed Google Scholar
Valencia A, Roman-Gomez J, Cervera J, Such E, Barragan E, Bolufer P et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 2009; 23: 1658–1666. ArticleCASPubMed Google Scholar
Jost E, Schmid J, Wilop S, Schubert C, Suzuki H, Herman JG et al. Epigenetic inactivation of secreted Frizzled-related proteins in acute myeloid leukaemia. Br J Haematol 2008; 142: 745–753. ArticleCASPubMed Google Scholar
Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667. ArticleCASPubMed Google Scholar
Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653. ArticleCASPubMedPubMed Central Google Scholar
Hu Y, Chen Y, Douglas L, Li S . beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 2009; 23: 109–116. ArticleCASPubMed Google Scholar
Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904. ArticlePubMedPubMed Central Google Scholar
Eaves CJ, Humphries RK . Acute myeloid leukemia and the Wnt pathway. N Engl J Med 2010; 362: 2326–2327. ArticleCASPubMed Google Scholar
Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 2011; 118: 2849–2856. ArticleCASPubMedPubMed Central Google Scholar
Mikesch JH, Steffen B, Berdel WE, Serve H, Müller-Tidow C . The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21: 1638–1647. ArticleCASPubMed Google Scholar
Guo Z, Dose M, Kovalovsky D, Chang R, O'Neil J, Look AT et al. Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood 2007; 109: 5463–5472. ArticleCASPubMedPubMed Central Google Scholar
Weerkamp F, van Dongen JJ, Staal FJ . Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20: 1197–1205. ArticleCASPubMed Google Scholar
Heidel FH, Mar BG, Armstrong SA . Self-renewal related signaling in myeloid leukemia stem cells. Int J Hematol 2011; 94: 109–117. ArticlePubMedPubMed Central Google Scholar
Staal FJ, Baum C, Cowan C, Dzierzak E, Hacein-Bey-Abina S, Karlsson S et al. Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia 2011; 25: 1095–1102. ArticleCASPubMed Google Scholar
Sengupta A, Banerjee D, Chandra S, Banerji SK, Ghosh R, Roy R et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 2007; 21: 949–955. ArticleCASPubMed Google Scholar
Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42. ArticleCASPubMed Google Scholar