Chaperone release and unfolding of substrates in type III secretion (original) (raw)
Galán, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science284, 1322–1328 (1999) ArticleADSPubMed Google Scholar
Eichelberg, K., Ginocchio, C. & Galán, J. E. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: Homology of InvC to the FOF1 ATPase family of proteins. J. Bacteriol.176, 4501–4510 (1994) ArticleCASPubMedPubMed Central Google Scholar
Cornelis, G. R. & Van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol.54, 735–774 (2000) ArticleCASPubMed Google Scholar
Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science280, 602–605 (1998) ArticleADSCASPubMed Google Scholar
Stebbins, C. E. & Galan, J. E. Priming virulence factors for delivery into the host. Nature Rev. Mol. Biol.4, 738–743 (2003) ArticleCAS Google Scholar
Stebbins, C. E. & Galán, J. E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature414, 77–81 (2001) ArticleADSCASPubMed Google Scholar
Birtalan, S. C., Phillips, R. M. & Ghosh, P. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell9, 971–980 (2002) ArticleCASPubMed Google Scholar
Ramamurthi, K. S. & Schneewind, O. Substrate recognition by the Yersinia type III protein secretion machinery. Mol. Microbiol.50, 1095–1102 (2003) ArticleCASPubMed Google Scholar
Lloyd, S. A., Forsberg, A., Wolf-Watz, H. & Francis, M. S. Targeting exported substrates to the Yersinia TTSS: different functions for different signals? Trends Microbiol.9, 367–371 (2001) ArticleCASPubMed Google Scholar
Galán, J. E. Salmonella interaction with host cells: Type III secretion at work. Annu. Rev. Cell Dev. Biol.17, 53–86 (2001) ArticlePubMed Google Scholar
Dreyfus, G., Williams, A. W., Kawagishi, I. & Macnab, R. M. Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the FOF1 ATPase and to virulence proteins of mammalian and plant pathogens. J. Bacteriol.175, 3131–3138 (1993) ArticleCASPubMedPubMed Central Google Scholar
Pozidis, C. et al. Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J. Biol. Chem.278, 25816–25824 (2003) ArticleCASPubMed Google Scholar
Claret, L., Calder, S. R., Higgins, M. & Hughes, C. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol. Microbiol.48, 1349–1355 (2003) ArticleCASPubMedPubMed Central Google Scholar
Akeda, Y. & Galan, J. E. Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains. J. Bacteriol.186, 2402–2412 (2004) ArticleCASPubMedPubMed Central Google Scholar
Kaniga, K., Uralil, J., Bliska, J. B. & Galán, J. E. A secreted tyrosine phosphatase with modular effector domains encoded by the bacterial pathogen Salmonella typhimurium. Mol. Microbiol.21, 633–641 (1996) ArticleCASPubMed Google Scholar
Stebbins, C. E. & Galán, J. E. Modulation of host signalling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol. Cell6, 1449–1460 (2000) ArticleCASPubMed Google Scholar
Gauthier, A. & Finlay, B. B. Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J. Bacteriol.185, 6747–6755 (2003) ArticleCASPubMedPubMed Central Google Scholar
Luo, Y. et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nature Struct. Biol.8, 1031–1036 (2001) ArticleADSCASPubMed Google Scholar
Farr, G., Scharl, E., Schumacher, R., Sondek, S. & Horwich, A. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell89, 927–937 (1997) ArticleCASPubMed Google Scholar
Lee, S. H. & Galan, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol.51, 483–495 (2004) ArticleCASPubMed Google Scholar
Lee, V. T. & Schneewind, O. Yop fusions to tightly folded protein domains and their effects on Yersinia enterocolitica type III secretion. J. Bacteriol.184, 3740–3745 (2002) ArticleCASPubMedPubMed Central Google Scholar
Fischer, C., Schauerte, J., Wisser, K., Steel, D. & Gafni, A. Differences in the pathways for unfolding and hydrogen exchange among mutants of Escherichia coli alkaline phosphatase. Biochim. Biophys. Acta1545, 96–103 (2001) ArticleCASPubMed Google Scholar
Ogura, T. & Wilkinson, A. AAA + superfamily ATPases: common structure—diverse function. Genes Cells6, 575–597 (2001) ArticleCASPubMed Google Scholar
Frickey, T. & Lupas, A. Phylogenetic analysis of AAA proteins. J. Struct. Biol.146, 2–10 (2004) ArticleCASPubMed Google Scholar
Dougan, D., Mogk, A., Zeth, K., Turgay, K. & Bukau, B. AAA + proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett.529, 6–10 (2002) ArticleCASPubMed Google Scholar
Kaniga, K., Bossio, J. C. & Galán, J. E. The Salmonella typhimurium invasion genes invF and invG encode homologues to the PulD and AraC family of proteins. Mol. Microbiol.13, 555–568 (1994) ArticleCASPubMed Google Scholar
Lara-Tejero, M. & Galán, J. E. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect. Immun.69, 4358–4365 (2001) ArticleCASPubMedPubMed Central Google Scholar