Gottesman, S. Proteases and their targets in Escherichia coli. Annu. Rev. Genet.30, 465–506 (1996) ArticleCAS Google Scholar
Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. AAA + : A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res.9, 27–43 (1999) CAS Google Scholar
Langer, T. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem. Sci.25, 247–251 (2000) ArticleCAS Google Scholar
Ogura, T. & Wilkinson, A. J. AAA + superfamily ATPases: common structure—diverse function. Genes Cells6, 575–597 (2001) ArticleCAS Google Scholar
Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell Dev. Biol.19, 565–587 (2003) ArticleCAS Google Scholar
Sauer, R. T. et al. Sculpting the proteome with AAA + proteases and disassembly machines. Cell119, 9–18 (2004) ArticleCAS Google Scholar
Pickart, C. M. & Cohen, R. E. Proteasomes and their kin: proteases in the machine age. Nature Rev. Mol. Cell Biol.5, 177–187 (2004) ArticleCAS Google Scholar
Grimaud, R., Kessel, M., Beuron, F., Steven, A. C. & Maurizi, M. R. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem.273, 12476–12481 (1998) ArticleCAS Google Scholar
Kim, Y. I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell5, 639–648 (2000) ArticleCAS Google Scholar
Singh, S. K., Grimaud, R., Hoskins, J. R., Wickner, S. & Maurizi, M. R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl Acad. Sci. USA97, 8898–8903 (2000) ArticleADSCAS Google Scholar
Burton, R. E., Siddiqui, S. M., Kim, Y. I., Baker, T. A. & Sauer, R. T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J.20, 3092–3100 (2001) ArticleCAS Google Scholar
Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA98, 10584–10589 (2001) ArticleADSCAS Google Scholar
Kenniston, J. A., Baker, T. A., Fernandez, J. M. & Sauer, R. T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of a AAA + degradation machine. Cell114, 511–520 (2003) ArticleCAS Google Scholar
Bolon, D. N., Grant, R. A., Baker, T. A. & Sauer, R. T. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA + ClpXP protease. Mol. Cell16, 343–350 (2004) ArticleCAS Google Scholar
Hersch, G. L., Burton, R. E., Bolon, D. N., Baker, T. A. & Sauer, R. T. Asymmetric interactions of ATP with the AAA + ClpX6 unfoldase: allosteric control of a protein machine. Cell121, 1017–1027 (2005) ArticleCAS Google Scholar
Hingorani, M. M., Washington, M. T., Moore, K. C. & Patel, S. S. The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1-ATPase. Proc. Natl Acad. Sci. USA94, 5012–5017 (1997) ArticleADSCAS Google Scholar
Stitt, B. L. & Xu, Y. Sequential hydrolysis of ATP molecules bound in interacting catalytic sites of Escherichia coli transcription termination protein Rho. J. Biol. Chem.273, 26477–26486 (1998) ArticleCAS Google Scholar
Stitt, B. L. Escherichia coli transcription termination factor Rho binds and hydrolyzes ATP using a single class of three sites. Biochemistry40, 2276–2281 (2001) ArticleCAS Google Scholar
Bochtler, M. et al. The structures of HsIU and the ATP-dependent protease HsIU–HsIV. Nature403, 800–805 (2000) ArticleADSCAS Google Scholar
Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell101, 589–600 (2000) ArticleCAS Google Scholar
Zalk, R. & Shoshan-Barmatz, V. ATP-binding sites in brain p97/VCP (valosin-containing protein), a multifunctional AAA ATPase. Biochem. J.374, 473–480 (2003) ArticleCAS Google Scholar
Hishida, T., Han, Y. W., Fujimoto, S., Iwasaki, H. & Shinagawa, H. Direct evidence that a conserved arginine in RuvB AAA + ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Proc. Natl Acad. Sci. USA101, 9573–9577 (2004) ArticleADSCAS Google Scholar
Boyer, P. D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem.66, 717–749 (1997) ArticleCAS Google Scholar
Wojtyra, U. A., Thibault, G., Tuite, A. & Houry, W. A. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J. Biol. Chem.278, 48981–48990 (2003) ArticleCAS Google Scholar
Kim, D. Y. & Kim, K. K. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem.278, 50664–50670 (2003) ArticleCAS Google Scholar
Joshi, S. A., Hersch, G. L., Baker, T. A. & Sauer, R. T. Communication between ClpX and ClpP during substrate processing and degradation. Nature Struct. Mol. Biol.11, 404–411 (2004) ArticleCAS Google Scholar
Dougan, D. A., Reid, B. G., Horwich, A. L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell9, 673–683 (2002) ArticleCAS Google Scholar
Levchenko, I., Seidel, M., Sauer, R. T. & Baker, T. A. A specificity-enhancing factor for the ClpXP degradation machine. Science289, 2354–2356 (2000) ArticleADSCAS Google Scholar
Kenniston, J. A., Baker, T. A. & Sauer, R. T. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc. Natl Acad. Sci. USA102, 1390–1395 (2005) ArticleADSCAS Google Scholar
Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell7, 627–637 (2001) ArticleCAS Google Scholar
Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumour antigen. Cell119, 47–60 (2004) ArticleCAS Google Scholar
Lee, S. Y. et al. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA + ATPase domains. Genes Dev.17, 2552–2563 (2003) ArticleCAS Google Scholar
Toth, E. A., Li, Y., Sawaya, M. R., Cheng, Y. & Ellenberger, T. The crystal structure of the bifunctional primase-helicase of bacteriophage T7. Mol. Cell12, 1113–1123 (2003) ArticleCAS Google Scholar
Skordalakes, E. & Berger, J. M. Structure of Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell114, 135–146 (2003) ArticleCAS Google Scholar
Schwacha, A. & Bell, S. P. Interactions between two catalytically distinct MCM subgroups are essential for coordinated ATP hydrolysis and DNA replication. Mol. Cell8, 1093–1104 (2001) ArticleCAS Google Scholar
Bowman, G. D., Goedken, E. R., Kazmirski, S. L., O'Donnell, M. & Kuriyan, J. DNA polymerase clamp loaders and DNA recognition. FEBS Lett.579, 863–867 (2005) ArticleCAS Google Scholar
Sakato, M. & King, S. M. Design and regulation of the AAA + microtubule motor dynein. J. Struct. Biol.146, 58–71 (2004) ArticleCAS Google Scholar