The ABC protein turned chloride channel whose failure causes cystic fibrosis (original) (raw)
Rommens, J. M. et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science245, 1059–1065 (1989). ADSCASPubMed Google Scholar
Riordan, J. R. et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science245, 1066–1073 (1989). ADSCASPubMed Google Scholar
Quinton, P. M. Chloride impermeability in cystic fibrosis. Nature301, 421–422 (1983). ADSCASPubMed Google Scholar
Schoumacher, R. A. et al. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature330, 752–754 (1987) ADSCASPubMed Google Scholar
Li, M. et al. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature331, 358–360 (1988). ADSCASPubMed Google Scholar
Bear, C. E. et al. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell68, 809–818 (1992). CASPubMed Google Scholar
Altschuler Y., Hodson C. & Milgram S. L. The apical compartment: trafficking pathways, regulators and scaffolding proteins. Curr. Opin. Cell Biol.15, 423–429 (2003). CASPubMed Google Scholar
Li, C. & Naren, A. P. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol. Ther.108, 208–223 (2005). CASPubMed Google Scholar
Du, K., Sharma, M. & Lukacs, G. L. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nature Struct. Mol. Biol.12, 17–25 (2005). CAS Google Scholar
Wine, J. J. Acid in the airways. Focus on ‘Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis’. Am. J. Physiol. Cell Physiol.290, C669–C671 (2006). CASPubMed Google Scholar
Davies, J. C. & Alton, E. W. Airway gene therapy. Adv. Genet.54, 291–314 (2005). CASPubMed Google Scholar
Dean, M., Rzhetsky, A. & Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res.11, 1156–1166 (2001). CASPubMed Google Scholar
Reyes, C. L. & Chang, G. Structure of the ABC transporter MsbA in complex with ADP.vanadate and lipopolysaccharide. Science308, 1028–1031 (2005). ADSCASPubMed Google Scholar
Locher, K. P., Lee, A. T. & Rees, D. C. The E. coli BtuCD structure: A framework for ABC transporter architecture and mechanism. Science296, 1091–1098 (2002). ADSCASPubMed Google Scholar
Rosenberg, M. F., Callaghan, R., Modok, S., Higgins, C. F. & Ford, R. C. Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J. Biol. Chem.280, 2857–2862 (2005). CASPubMed Google Scholar
Ramjeesingh, M., Kidd, J. F., Huan, L. J., Wang, Y. & Bear, C. E. Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane. Biochem. J.374, 793–797 (2003). CASPubMedPubMed Central Google Scholar
Raghuram, V., Mak, D. D. & Foskett, J. K. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction. Proc. Natl Acad. Sci. USA98, 1300–1305 (2001). ADSCASPubMedPubMed Central Google Scholar
Chen, J. H., Chang, X. B., Aleksandrov, A. A. & Riordan, J. R. CFTR is a misnomer: Biochemical and functional evidence. J. Membr. Biol.188, 55–71 (2002). CASPubMed Google Scholar
Zhang, Z. R. et al. Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel: One polypeptide forms one pore. J. Biol. Chem.280, 458–468 (2005). CASPubMed Google Scholar
Dawson, D. C., Liu, X., Zhang, Z. & McCarty, N. A. in Cystic Fibrosis Transmembrane Conductance Regulator (eds Kirk, K. L. & Dawson, D. C.) 1–34 (Kluwer/Plenum, New York, 2003). Google Scholar
Linsdell, P. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp. Physiol.99, 123–129 (2006). Google Scholar
Tabcharani, J. A., Chang, X. B., Riordan, J. R. & Hanrahan, J. W. Phosphorylation-regulated Cl− channel in CHO cells stably expressing the cystic fibrosis gene. Nature352, 628–631 (1991). ADSCASPubMed Google Scholar
Hung, L. W. et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature396, 703–707 (1998). ADSCASPubMed Google Scholar
Hopfner, K. P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell101, 789–800 (2000). CASPubMed Google Scholar
Smith, P. C. et al. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell10, 139–149 (2002). CASPubMedPubMed Central Google Scholar
Chen, J., Lu, G., Lin, J., Davidson, A. L. & Quiocho, F. A. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell12, 651–661 (2003). CASPubMed Google Scholar
Zaitseva, J., Jenewein, S., Jumpertz, T., Holland, I. B. & Schmitt, L. H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. EMBO J.24, 1901–1910 (2005). CASPubMedPubMed Central Google Scholar
Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J.1, 945–951 (1982). CASPubMedPubMed Central Google Scholar
Moody, J. E., Millen, L., Binns, D., Hunt, J. F. & Thomas, P. J. Cooperative, ATP-dependent association of the nucleotide-binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J. Biol. Chem.277, 21111–21114 (2002). CASPubMed Google Scholar
Lewis, H. A. et al. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J.23, 282–293 (2004) . CASPubMed Google Scholar
Lewis, H. A. et al. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J. Biol. Chem.280, 1346–1353 (2005). CASPubMed Google Scholar
Thibodeau, P. H., Brautigam, C. A., Machius, M. & Thomas, P. J. Side chain and backbone contributions of Phe508 to CFTR folding. Nature Struct. Mol. Biol.12, 10–16 (2005). CAS Google Scholar
Rosenberg, M. F. et al. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J. Biol. Chem.279, 39051–39057 (2004). CASPubMed Google Scholar
Tabcharani, J. A. et al. Multi-ion pore behaviour in the CFTR chloride channel. Nature366, 79–82 (1993). ADSCASPubMed Google Scholar
Cotten, J. F. & Welsh, M. J. Cystic fibrosis-associated mutations at arginine 347 alter the pore architecture of CFTR. Evidence for disruption of a salt bridge. J. Biol. Chem.274, 5429–5435 (1999). CASPubMed Google Scholar
Csanády, L., Chan, K. W., Nairn, A. C. & Gadsby, D. C. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. J. Gen. Physiol.125, 43–55 (2005). PubMedPubMed Central Google Scholar
Cheng, S. H. et al. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell66, 1027–1036 (1991). CASPubMed Google Scholar
Picciotto, M., Cohn, J., Bertuzzi, G., Greengard, P. & Nairn, A.C. Phosphorylation of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem.267, 12742–12752 (1992). CASPubMed Google Scholar
Csanády, L. et al. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. J. Gen. Physiol.125, 171–186 (2005). PubMedPubMed Central Google Scholar
Neville, D. C. A. et al. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci.6, 2436–2445 (1997). CASPubMedPubMed Central Google Scholar
Berger, H.A., Travis, S. M. & Welsh, M. J. Regulation of the cystic fibrosis transmembrane conductance regulator Cl− channel by specific protein kinases and protein phosphatases. J. Biol. Chem.268, 2037–2047 (1993). CASPubMed Google Scholar
Jia, Y., Mathews, C. J. & Hanrahan, J. W. Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A. J. Biol. Chem.272, 4978–4984 (1997). CASPubMed Google Scholar
Chappe, V. et al. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J. Physiol.548, 39–52 (2003). CASPubMedPubMed Central Google Scholar
Rich, D. P. et al. Effect of deleting the R domain on CFTR-generated chloride channels. Science253, 205–207 (1991). ADSCASPubMed Google Scholar
Csanády, L. et al. Severed channels probe regulation of gating of CFTR by its cytoplasmic domains. J. Gen. Physiol.116, 477–500 (2000). PubMedPubMed Central Google Scholar
Winter, M. C. & Welsh, M. J. Stimulation of CFTR activity by its phosphorylated R domain. Nature389, 294–296 (1997). ADSCASPubMed Google Scholar
Gadsby, D. C. & Nairn, A. C. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol. Rev.79, S77–S107 (1999). CASPubMed Google Scholar
Chang, X.-B. et al. Protein kinase A(PKA) still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites. J. Biol. Chem.268, 11304–11311 (1993). CASPubMed Google Scholar
Ostedgaard, L. S., Baldursson, O., Vermeer, D. W., Welsh, M. J. & Robertson, A. D. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc. Natl Acad. Sci. USA97, 5657–5662 (2000). ADSCASPubMedPubMed Central Google Scholar
Dulhanty, A. M. & Riordan, J. R. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Biochemistry33, 4072–4079 (1994). CASPubMed Google Scholar
Wilkinson, D. J. et al. CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am. J. Physiol.273, L127–L133 (1997). CASPubMed Google Scholar
Rich, D. R. et al. Regulation of the cystic fibrosis transmembrane conductance regulator Cl channel by negative charge in the R domain. J. Biol. Chem.268, 20259–20267 (1993). CASPubMed Google Scholar
Aleksandrov, A. A., Chang, X., Aleksandrov, L. & Riordan, J. R. The non-hydrolytic pathway of cystic fibrosis transmembrane conductance regulator ion channel gating. J. Physiol.528, 259–265 (2000). CASPubMedPubMed Central Google Scholar
Dulhanty, A. M., Chang, X.-B. & Riordan, J. R. Mutation of potential phosphorylation sites in the recombinant R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on domain conformation. Biochem. Biophys. Res. Commun.206, 207–214 (1995). CASPubMed Google Scholar
Xie, J., Zhao, J., Davis, P. B. & Ma, J. Conformation, independent of charge, in the R domain affects cystic fibrosis transmembrane conductance regulator channel openings. Biophys. J.78, 1293–1305 (2000). CASPubMedPubMed Central Google Scholar
Travis, S. M., Carson, M. R., Ries, D. R. & Welsh, M. J. Interaction of nucleotides with membrane-associated cystic fibrosis transmembrane conductance regulator. J. Biol. Chem.268, 15336–15339 (1993). CASPubMed Google Scholar
Aleksandrov, L., Aleksandrov, A. A., Chang, X. B. & Riordan, J. R. The first nucleotide binding domain of cystic fibrosis transmembrane conductance regulator is a site of stable nucleotide interaction, whereas the second is a site of rapid turnover. J. Biol. Chem.277, 15419–15425 (2002). CASPubMed Google Scholar
Basso, C., Vergani, P., Nairn, A. C. & Gadsby, D. C. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. J. Gen. Physiol.122, 333–348 (2003) . CASPubMedPubMed Central Google Scholar
Ostedgaard, L. S., Rich, D. P., DeBerg, L. G. & Welsh, M. J. Association of domains within the cystic fibrosis transmembrane conductance regulator. Biochemistry36, 1287–1294 (1997) . CASPubMed Google Scholar
Naren, A. P. et al. CFTR chloride channel regulation by an interdomain interaction. Science286, 544–548 (1999) . CASPubMed Google Scholar
Chappe, V., Irvine, T., Liao, J., Evagelidis, A. & Hanrahan, J. W. Phosphorylation of CFTR by PKA promotes binding of the regulatory domain. EMBO J.24, 2730–2740 (2005). CASPubMedPubMed Central Google Scholar
Anderson, M. P. et al. Nucleoside triphosphates are required to open the CFTR chloride channel. Cell67, 775–784 (1991) . CASPubMed Google Scholar
Hwang, T.-C., Nagel, G. A., Nairn, A. C. & Gadsby, D. C. Regulation of the gating of CFTR Cl channels by phosphorylation and ATP hydrolysis. Proc. Natl Acad. Sci. USA91, 4698–4702 (1994). ADSCASPubMedPubMed Central Google Scholar
Vergani, P., Nairn, A. C. & Gadsby, D. C. On the mechanism of MgATP-dependent gating of CFTR Cl− channels. J. Gen. Physiol.121, 17–36 (2003) . CASPubMedPubMed Central Google Scholar
Powe, A. C. J., Al-Nakkash, L., Li M. & Hwang, T. C. Mutation of Walker-A lysine 464 in cystic fibrosis transmembrane conductance regulator reveals functional interaction between its nucleotide-binding domains. J. Physiol.539, 333–346 (2002). CASPubMedPubMed Central Google Scholar
Berger, A. L., Ikuma, M. & Welsh, M. J. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Proc. Natl Acad. Sci. USA102, 455–460 (2005). ADSCASPubMed Google Scholar
Bompadre, S. G. CFTR gating II: effects of nucleotide binding on the stability of open states. J. Gen. Physiol.125, 377–394 (2005). CASPubMedPubMed Central Google Scholar
Szabó, K., Szakács, G., Hegedus, T. & Sarkadi, B. Nucleotide occlusion in the human cystic fibrosis transmembrane conductance regulator. J. Biol. Chem.274, 12209–12212 (1999) . PubMed Google Scholar
Davidson, A. L. & Chen, J. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem.73, 241–268 (2004). CASPubMed Google Scholar
Higgins, C. F. & Linton, K. J. The ATP switch model for ABC transporters. Nature Struct. Mol. Biol.11, 918–926 (2004). CAS Google Scholar
Ramjeesingh, M. et al. Walker mutations reveal loose relationship between catalytic and channel-gating activities of purified CFTR (cystic fibrosis transmembrane conductance regulator). Biochemistry38, 1463–1468 (1999) . CASPubMed Google Scholar
Gunderson, K. L. & Kopito, R. R. Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis. Cell82, 231–239 (1995). CASPubMed Google Scholar
Carson, M. R., Travis, S. M. & Welsh, M. J. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J. Biol. Chem.270, 1711–1717 (1995). CASPubMed Google Scholar
Dousmanis, A. G., Nairn, A. C. & Gadsby, D. C. Distinct Mg(2+)-dependent steps rate limit opening and closing of a single CFTR Cl(−) channel. J. Gen. Physiol.119, 545–559 (2002). CASPubMedPubMed Central Google Scholar
Mathews, C. J., Tabcharani, J. A. & Hanrahan, J. W. The CFTR chloride channel: nucleotide interactions and temperature-dependent gating. J. Membr. Biol.163, 55–66 (1998). CASPubMed Google Scholar
Gunderson, K. L. & Kopito, R. R. Effects of pyrophosphate and nucleotide analogs suggest a role for ATP hydrolysis in cystic fibrosis transmembrane regulator channel gating. J. Biol. Chem.269, 19349–19353 (1994). CASPubMed Google Scholar
Baukrowitz, T., Hwang, T.-C., Nairn, A. C. & Gadsby, D. C. Coupling of CFTR Cl channel gating to an ATP hydrolysis cycle. Neuron12, 473–482 (1994). CASPubMed Google Scholar
Urbatsch, I. L., Sankaran, B., Weber, J. & Senior, A. E. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J. Biol. Chem.270, 19383–19390 (1995). CASPubMed Google Scholar
Aleksandrov, A. A. & Riordan, J. R. Regulation of CFTR ion channel gating by MgATP. FEBS Lett.431, 97–101 (1998). CASPubMed Google Scholar
Vergani, P., Lockless, S. W., Nairn, A. C. & Gadsby, D. C. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature433, 876–880 (2005). ADSCASPubMedPubMed Central Google Scholar
Tombline, G., Bartholomew, L. A., Urbatsch, I. L. & Senior, A. E. Combined mutation of catalytic glutamate residues in the two nucleotide binding domains of P-glycoprotein generates a conformation that binds ATP and ADP tightly. J. Biol. Chem.279, 31212–31220 (2004). CASPubMed Google Scholar
Mense, M., Nairn, A. C. & Gadsby, D. C. CFTR chloride channel activation in Xenopus oocytes by forskolin/IBMX promotes formation of a Rad50-like NBD1/NBD2 dimer. Biophys. J.90, 310a (2006). Google Scholar
Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science286, 295–299 (1999). CASPubMed Google Scholar
Randak, C. O. & Welsh, M. J. Adenylate kinase activity in ABC transporters. J. Biol. Chem.280, 34385–34388 (2005). CASPubMed Google Scholar
Gross, C. H. et al. Nucleotide binding domains of cystic fibrosis transmembrane conductance regulator, an ABC-transporter, catalyze adenylate kinase activity but not ATP hydrolysis. J. Biol. Chem. (in the press).
Muanprasat, C. et al. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J. Gen. Physiol.124, 125–137 (2004). CASPubMedPubMed Central Google Scholar