Bulow, H. E. & Hobert, O. The molecular diversity of glycosaminoglycans shapes animal development. Annu. Rev. Cell Dev. Biol.22, 375–407 (2006). CASPubMed Google Scholar
Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nature Rev. Mol. Cell Biol.6, 530–541 (2005). Google Scholar
Haltiwanger, R. S. & Lowe, J. B. Role of glycosylation in development. Annu. Rev. Biochem.73, 491–537 (2004). CASPubMed Google Scholar
Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem.71, 435–471 (2002). CASPubMed Google Scholar
Dhoot, G. K. et al. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science293, 1663–1666 (2001). ADSCAS Google Scholar
Morimoto-Tomita, M., Uchimura, K., Werb, Z., Hemmerich, S. & Rosen, S. D. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem.277, 49175–49185 (2002). CASPubMedPubMed Central Google Scholar
Vlodavsky, I. et al. Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin. Cancer Biol.12, 121–129 (2002). CASPubMed Google Scholar
Fedarko, N. S. & Conrad, H. E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J.Cell Biol.102, 587–599 (1986). CASPubMed Google Scholar
Huntington, J. A. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J. Thromb. Haemost.1, 1535–1549 (2003). CASPubMed Google Scholar
Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev.16, 107–137 (2005). CASPubMed Google Scholar
Forsten-Williams, K., Chua, C. C. & Nugent, M. A. The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J. Theor. Biol.233, 483–499 (2005). CASPubMed Google Scholar
Kreuger, J., Spillmann, D., Li, J. P. & Lindahl, U. Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol.174, 323–327 (2006). CASPubMedPubMed Central Google Scholar
Alexopoulou, A. N., Multhaupt, H. A. & Couchman, J. R. Syndecans in wound healing, inflammation and vascular biology. Int. J. Biochem. Cell Biol.39, 505–528 (2006). PubMed Google Scholar
Couchman, J. R., Chen, L. G. & Woods, A. Syndecans and cell adhesion. Int. Rev. Cytol.207, 113–150 (2001). CASPubMed Google Scholar
Kirkpatrick, C. A. et al. The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Dev. Biol.300, 570–582 (2006). CASPubMed Google Scholar
Reizes, O. et al. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell106, 105–116 (2001). CASPubMed Google Scholar
Strader, A. D., Reizes, O., Woods, S. C., Benoit, S. C. & Seeley, R. J. Mice lacking the syndecan-3 gene are resistant to diet-induced obesity. J. Clin. Invest.114, 1354–1360 (2004). CASPubMedPubMed Central Google Scholar
Zcharia, E. et al. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J.18, 252–263 (2004). CASPubMed Google Scholar
Mahley, R. W. & Ji, Z. S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res.40, 1–16 (1999). ADSCASPubMed Google Scholar
MacArthur, J. M. et al. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest.117, 153–164 (2007). CASPubMedPubMed Central Google Scholar
Fuki, I. V. et al. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J. Clin. Invest.100, 1611–1622 (1997). CASPubMedPubMed Central Google Scholar
Zeng, B. J., Mortimer, B. C., Martins, I. J., Seydel, U. & Redgrave, T. G. Chylomicron remnant uptake is regulated by the expression and function of heparan sulfate proteoglycan in hepatocytes. J. Lipid Res.39, 845–860 (1998). CASPubMed Google Scholar
Iozzo, R. V. Basement membrane proteoglycans: from cellar to ceiling. Nature Rev. Mol. Cell Biol.6, 646–656 (2005). CAS Google Scholar
Raats, C. J. I., Van den Born, J. & Berden, J. H. M. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int.57, 385–400 (2000). CASPubMed Google Scholar
Kanwar, Y. S., Linker, A. & Farquhar, M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol.86, 688–693 (1980). CASPubMed Google Scholar
Groffen, A. J. et al. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J. Histochem. Cytochem.46, 19–27 (1998). CASPubMed Google Scholar
Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J. R. & Yamada, Y. Perlecan is essential for cartilage and cephalic development. Nature Genet.23, 354–358 (1999). CASPubMed Google Scholar
Rossi, M. et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J.22, 236–245 (2003). CASPubMedPubMed Central Google Scholar
Morita, H. et al. Heparan sulfate of perlecan is involved in glomerular filtration. J. Am. Soc. Nephrol.16, 1703–1710 (2005). CASPubMed Google Scholar
Utriainen, A. et al. Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Hum. Mol. Genet.13, 2089–2099 (2004). CASPubMed Google Scholar
Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell85, 525–535 (1996). CASPubMed Google Scholar
Westphal, V. et al. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation. Am. J. Pathol.157, 1917–1925 (2000). CASPubMedPubMed Central Google Scholar
Bode, L., Eklund, E. A., Murch, S. & Freeze, H. H. Heparan sulfate depletion amplifies TNF-α-induced protein leakage in an in vitro model of protein-losing enteropathy. Am. J. Physiol. Gastrointest. Liver Physiol.288, G1015–G1023 (2005). CASPubMed Google Scholar
Donnelly, J. P., Rosenthal, A., Castle, V. P. & Holmes, R. D. Reversal of protein-losing enteropathy with heparin therapy in three patients with univentricular hearts and Fontan palliation. J. Pediatr.130, 474–478 (1997). CASPubMed Google Scholar
Kronenberg, H. M. Developmental regulation of the growth plate. Nature423, 332–336 (2003). ADSCAS Google Scholar
Koziel, L., Kunath, M., Kelly, O. G. & Vortkamp, A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev. Cell6, 801–813 (2004). CASPubMed Google Scholar
Lander, A. D., Nie, Q. & Wan, F. Y. Do morphogen gradients arise by diffusion? Dev. Cell2, 785–796 (2002). CASPubMed Google Scholar
Arikawa-Hirasawa, E. et al. Dyssegmental dysplasia, Silverman–Handmaker type, is caused by functional null mutations of the perlecan gene. Nature Genet.27, 431–434 (2001). CASPubMed Google Scholar
Stickens, D., Zak, B. M., Rougier, N., Esko, J. D. & Werb, Z. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development132, 5055–5068 (2005). CASPubMedPubMed Central Google Scholar
Hovey, R. C., Trott, J. F. & Vonderhaar, B. K. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J. Mammary Gland Biol. Neoplasia7, 17–38 (2002). PubMed Google Scholar
Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA101, 4158–4163 (2004). ADSCASPubMed Google Scholar
Gautam, M., DeChiara, T. M., Glass, D. J., Yancopoulos, G. D. & Sanes, J. R. Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. Brain Res. Dev. Brain Res.114, 171–178 (1999). CASPubMed Google Scholar
Jenniskens, G. J. et al. Phenotypic knockout of heparan sulfates in myotubes impairs excitation-induced calcium spiking. FASEB J.17, NIL606–NIL629 (2003). Google Scholar
Mook-Jung, I. & Gordon, H. Acetylcholine receptor clustering in C2 muscle cells requires chondroitin sulfate. J.Neurobiol.28, 482–492 (1995). CASPubMed Google Scholar
McDonnell, K. M. & Grow, W. A. Reduced glycosaminoglycan sulfation diminishes the agrin signal transduction pathway. Dev. Neurosci.26, 1–10 (2004). CASPubMed Google Scholar
Kramer, K. L. & Yost, H. J. Ectodermal syndecan-2 mediates left–right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev. Cell2, 115–124 (2002). CASPubMed Google Scholar
Jakobsson, L. et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell10, 625–634 (2006). CASPubMed Google Scholar
Parish, C. R. The role of heparan sulphate in inflammation. Nature Rev. Immunol.6, 633–643 (2006). MathSciNetCAS Google Scholar
Wang, L., Fuster, M., Sriramarao, P. & Esko, J. D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nature Immunol.6, 902–910 (2005). CAS Google Scholar
Abrink, M., Grujic, M. & Pejler, G. Serglycin is essential for maturation of mast cell secretory granule. J. Biol. Chem.279, 40897–40905 (2004). PubMed Google Scholar
Humphries, D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature400, 769–772 (1999). ADSCASPubMed Google Scholar
Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature400, 773–776 (1999). ADSCASPubMed Google Scholar
Grujic, M. et al. Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage. J. Biol. Chem.280, 33411–33418 (2005). CASPubMed Google Scholar
Zernichow, L. et al. Serglycin is the major secreted proteoglycan in macrophages and has a role in the regulation of macrophage tumor necrosis factor-α secretion in response to lipopolysaccharide. J. Biol. Chem.281, 26792–26801 (2006). CASPubMed Google Scholar
Sher, I. et al. Targeting perlecan in human keratinocytes reveals novel roles for perlecan in epidermal formation. J. Biol. Chem.281, 5178–5187 (2006). CASPubMed Google Scholar
Zhou, Z. et al. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res.64, 4699–4702 (2004). CASPubMed Google Scholar
Echtermeyer, F. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest.107, 9–14 (2001). Google Scholar
Stepp, M. A. et al. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J. Cell Sci.115, 4517–4531 (2002). CASPubMed Google Scholar
Kainulainen, V., Wang, H. M., Schick, C. & Bernfield, M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem.273, 11563–11569 (1998). CASPubMed Google Scholar
Midwood, K. S., Valenick, L. V., Hsia, H. C. & Schwarzbauer, J. E. Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4. Mol. Biol. Cell15, 5670–5677 (2004). CASPubMedPubMed Central Google Scholar
Cool, S. M. & Nurcombe, V. Heparan sulfate regulation of progenitor cell fate. J. Cell Biochem.99, 1040–1051 (2006). CASPubMed Google Scholar
Cornelison, D. D. et al. Essential and separable roles for syndecan-3 and syndecan-4 in skeletal muscle development and regeneration. Genes Dev.18, 2231–2236 (2004). CASPubMedPubMed Central Google Scholar
De Agostini, A., Watkins, S. C., Slayter, H. S., Youssoufian, H. & Rosenberg, R. D. Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J. Cell Biol.111, 1293–1304 (1990). CASPubMed Google Scholar
Marcum, J. A., Fritze, L., Galli, S. J., Karp, G. & Rosenberg, R. D. Microvascular heparin-like species with anticoagulant activity. Am. J. Physiol.245, H725–H733 (1983). CASPubMed Google Scholar
HajMohammadi, S. et al. Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. J. Clin. Invest.111, 989–999 (2003). CASPubMedPubMed Central Google Scholar
Shworak, N. W., HajMohammadi, S., De Agostini, A. I. & Rosenberg, R. D. Mice deficient in heparan sulfate 3-_O_-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj. J.19, 355–361 (2002). CASPubMed Google Scholar
Hasan, S. et al. Coordinate expression of anticoagulant heparan sulfate proteoglycans and serine protease inhibitors in the rat ovary: a potent system of proteolysis control. Biol.Reprod.66, 144–158 (2002). CASPubMed Google Scholar
Hosseini, G., Liu, J. & De Agostini, A. I. Characterization and hormonal modulation of anticoagulant heparan sulfate proteoglycans synthesized by rat ovarian granulosa cells. J. Biol. Chem.271, 22090–22099 (1996). CASPubMed Google Scholar
Fuster, M. M. & Esko, J. D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nature Rev. Cancer5, 526–542 (2005). CAS Google Scholar
van Horssen, J., Wesseling, P., van den Heuvel, L. P., de Waal, R. M. & Verbeek, M. M. Heparan sulphate proteoglycans in Alzheimer's disease and amyloid-related disorders. Lancet Neurol.2, 482–492 (2003). CASPubMed Google Scholar
Li, J. P. et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc. Natl Acad. Sci. USA102, 6473–6477 (2005). ADSCASPubMed Google Scholar
Li, Q., Park, P. W., Wilson, C. L. & Parks, W. C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell111, 635–646 (2002). CASPubMed Google Scholar
Park, P. W., Pier, G. B., Hinkes, M. T. & Bernfield, M. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature411, 98–102 (2001). ADSCASPubMed Google Scholar
Haynes, A. et al. Syndecan 1 shedding contributes to Pseudomonas aeruginosa sepsis. Infect. Immun.73, 7914–7921 (2005). CASPubMedPubMed Central Google Scholar
Xu, J., Park, P. W., Kheradmand, F. & Corry, D. B. Endogenous attenuation of allergic lung inflammation by syndecan-1. J. Immunol.174, 5758–5765 (2005). CASPubMed Google Scholar
Dinglasan, R. R. & Jacobs-Lorena, M. Insight into a conserved lifestyle: protein–carbohydrate adhesion strategies of vector-borne pathogens. Infect. Immun.73, 7797–7807 (2005). CASPubMedPubMed Central Google Scholar
Bishop, J. R. & Esko, J. D. The elusive role of heparan sulfate in Toxoplasma gondii infection. Mol. Biochem. Parasitol.139, 267–269 (2005). CASPubMed Google Scholar
Bishop, J. R., Crawford, B. E. & Esko, J. D. Cell surface heparan sulfate promotes replication of Toxoplasma gondii. Infect. Immun.73, 5395–5401 (2005). CASPubMedPubMed Central Google Scholar
Cano-Gauci, D. F. et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J. Cell Biol.146, 255–264 (1999). CASPubMedPubMed Central Google Scholar
Chiao, E. et al. Overgrowth of a mouse model of the Simpson–Golabi–Behmel syndrome is independent of IGF signaling. Dev. Biol.243, 185–206 (2002). CASPubMed Google Scholar
Kaksonen, M. et al. Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Mol. Cell. Neurosci.21, 158–172 (2002). CASPubMed Google Scholar
Grobe, K. et al. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development132, 3777–3786 (2005). CASPubMed Google Scholar
Ringvall, M. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking _N_-deacetylase/_N_-sulfotransferase-1. J. Biol. Chem.275, 25926–25930 (2000). CASPubMed Google Scholar
Pan, Y., Woodbury, A., Esko, J. D., Grobe, K. & Zhang, X. Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development133, 4933–4944 (2006). CASPubMed Google Scholar
Bullock, S. L., Fletcher, J. M., Beddington, R. S. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev.12, 1894–1906 (1998). CASPubMedPubMed Central Google Scholar
Li, J. P. et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J. Biol. Chem.278, 28363–28366 (2003). CASPubMed Google Scholar
Serpinskaya, A. S., Feng, G., Sanes, J. R. & Craig, A. M. Synapse formation by hippocampal neurons from agrin-deficient mice. Dev. Biol.205, 65–78 (1999). CASPubMed Google Scholar
Arikawa-Hirasawa, E., Rossi, S. G., Rotundo, R. L. & Yamada, Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nature Neurosci.5, 119–123 (2002). CASPubMed Google Scholar
Viviano, B. L. et al. Altered hematopoiesis in glypican-3-deficient mice results in decreased osteoclast differentiation and a delay in endochondral ossification. Dev. Biol.282, 152–162 (2005). CASPubMed Google Scholar
Paine-Saunders, S., Viviano, B. L., Zupicich, J., Skarnes, W. C. & Saunders, S. glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev. Biol.225, 179–187 (2000). CASPubMed Google Scholar
Pallerla, S. R., Pan, Y., Zhang, X., Esko, J. D. & Grobe, K. Heparan sulfate Ndst1 gene function variably regulates multiple signaling pathways during mouse development. Dev. Dyn.236, 556–563 (2007). CASPubMed Google Scholar
Kram, V. et al. Heparanase is expressed in osteoblastic cells and stimulates bone formation and bone mass. J. Cell Physiol.207, 784–792 (2006). CASPubMed Google Scholar
Zcharia, E. et al. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J.19, 211–221 (2005). CASPubMed Google Scholar
Li, Q. & Olsen, B. R. Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am. J. Pathol.165, 415–424 (2004). CASPubMedPubMed Central Google Scholar
Moulton, K. S. et al. Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis. Circulation110, 1330–1336 (2004). CASPubMed Google Scholar
Gotte, M. et al. Role of syndecan-1 in leukocyte–endothelial interactions in the ocular vasculature. Invest. Ophthalmol. Vis. Sci.43, 1135–1141 (2002). PubMed Google Scholar
Ishiguro, K. et al. Syndecan-4 deficiency impairs the fetal vessels in the placental labyrinth. Dev. Dyn.219, 539–544 (2000). CASPubMed Google Scholar
Fan, G. et al. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett.467, 7–11 (2000). ADSCASPubMed Google Scholar
Ishiguro, K. et al. Syndecan-4 deficiency increases susceptibility to κ-carrageenan-induced renal damage. Lab. Invest.81, 509–516 (2001). CASPubMed Google Scholar