Calcineurin sets the bandwidth for discrimination of signals during thymocyte development (original) (raw)

References

  1. Palmer, E. Negative selection–clearing out the bad apples from the T-cell repertoire. Nature Rev. Immunol. 3, 383–391 (2003)
    Article CAS Google Scholar
  2. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003)
    Article CAS PubMed Google Scholar
  3. Neilson, J. R., Winslow, M. M., Hur, E. M. & Crabtree, G. R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004)
    Article CAS PubMed Google Scholar
  4. Cante-Barrett, K., Winslow, M. M. & Crabtree, G. R. Selective role of NFATc3 in positive selection of thymocytes. J. Immunol. 179, 103–110 (2007)
    Article CAS PubMed Google Scholar
  5. Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, E. G. & Perlmutter, R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995)
    Article CAS ADS PubMed Google Scholar
  6. Costello, P. S., Nicolas, R. H., Watanabe, Y., Rosewell, I. & Treisman, R. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nature Immunol. 5, 289–298 (2004)
    Article CAS Google Scholar
  7. Fischer, A. M., Katayama, C. D., Pages, G., Pouyssegur, J. & Hedrick, S. M. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005)
    Article CAS PubMed Google Scholar
  8. Shortman, K., Vremec, D. & Egerton, M. The kinetics of T cell antigen receptor expression by subgroups of CD4+8+ thymocytes: delineation of CD4+8+3(2+) thymocytes as post-selection intermediates leading to mature T cells. J. Exp. Med. 173, 323–332 (1991)
    Article CAS PubMed Google Scholar
  9. Fehling, H. J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995)
    Article CAS ADS PubMed Google Scholar
  10. Levelt, C. N., Carsetti, R. & Eichmann, K. Regulation of thymocyte development through CD3. II. Expression of T cell receptor β CD3 epsilon and maturation to the CD4+8+ stage are highly correlated in individual thymocytes. J. Exp. Med. 178, 1867–1875 (1993)
    Article CAS PubMed Google Scholar
  11. Penit, C. In vivo thymocyte maturation. BUdR labeling of cycling thymocytes and phenotypic analysis of their progeny support the single lineage model. J. Immunol. 137, 2115–2121 (1986)
    CAS PubMed Google Scholar
  12. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002)
    Article CAS PubMed Google Scholar
  13. Gallo, E. M., Cante-Barrett, K. & Crabtree, G. R. Lymphocyte calcium signaling from membrane to nucleus. Nature Immunol. 7, 25–32 (2006)
    Article CAS Google Scholar
  14. Iritani, B. M., Alberola-Ila, J., Forbush, K. A. & Perimutter, R. M. Distinct signals mediate maturation and allelic exclusion in lymphocyte progenitors. Immunity 10, 713–722 (1999)
    Article CAS PubMed PubMed Central Google Scholar
  15. Aliahmad, P. et al. TOX provides a link between calcineurin activation and CD8 lineage commitment. J. Exp. Med. 199, 1089–1099 (2004)
    Article CAS PubMed PubMed Central Google Scholar
  16. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994)
    Article CAS PubMed Google Scholar
  17. Hogquist, K. A. et al. Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389–399 (1997)
    Article CAS PubMed Google Scholar
  18. Werlen, G., Hausmann, B. & Palmer, E. A motif in the αβ T-cell receptor controls positive selection by modulating ERK activity. Nature 406, 422–426 (2000)
    Article CAS ADS PubMed Google Scholar
  19. McNeil, L. K., Starr, T. K. & Hogquist, K. A. A requirement for sustained ERK signaling during thymocyte positive selection in vivo . Proc. Natl Acad. Sci. USA 102, 13574–13579 (2005)
    Article CAS ADS PubMed PubMed Central Google Scholar
  20. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002)
    Article CAS ADS PubMed Google Scholar
  21. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988)
    Article CAS ADS PubMed Google Scholar
  22. Baldwin, T. A., Sandau, M. M., Jameson, S. C. & Hogquist, K. A. The timing of TCR α expression critically influences T cell development and selection. J. Exp. Med. 202, 111–121 (2005)
    Article CAS PubMed PubMed Central Google Scholar
  23. Reynolds, L. F. et al. Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J. Biol. Chem. 279, 18239–18246 (2004)
    Article CAS PubMed Google Scholar
  24. Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nature Immunol. 5, 524–530 (2004)
    Article CAS Google Scholar
  25. Cante-Barrett, K., Gallo, E. M., Winslow, M. M. & Crabtree, G. R. Thymocyte negative selection is mediated by protein kinase C- and Ca2+-dependent transcriptional induction of bim of cell death. J. Immunol. 176, 2299–2306 (2006)
    Article CAS PubMed Google Scholar
  26. Wei, M. L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446 (1992)
    Article CAS ADS PubMed Google Scholar
  27. Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002)
    Article CAS PubMed Google Scholar
  28. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996)
    Article CAS ADS PubMed Google Scholar

Download references