Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles (original) (raw)
References
Portnoy, D. A., Auerbuch, V. & Glomski, I. J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol.158, 409–414 (2002) ArticleCASPubMedPubMed Central Google Scholar
Bhardwaj, V., Kanagawa, O., Swanson, P. E. & Unanue, E. R. Chronic Listeria infection in SCID mice: requirements for the carrier state and the dual role of T cells in transferring protection or suppression. J. Immunol.160, 376–384 (1998) CASPubMed Google Scholar
Kayal, S. & Charbit, A. Listeriolysin O: a key protein of Listeria monocytogenes with multiple functions. FEMS Microbiol. Rev.30, 514–529 (2006) ArticleCASPubMed Google Scholar
Shaughnessy, L. M., Hoppe, A. D., Christensen, K. A. & Swanson, J. A. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell. Microbiol.8, 781–792 (2006) ArticleCASPubMedPubMed Central Google Scholar
Myers, J. T., Tsang, A. W. & Swanson, J. A. Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J. Immunol.171, 5447–5453 (2003) ArticleCASPubMed Google Scholar
del Cerro-Vadillo, E. et al. Cutting edge: a novel nonoxidative phagosomal mechanism exerted by cathepsin-D controls Listeria monocytogenes intracellular growth. J. Immunol.176, 1321–1325 (2006) ArticlePubMed Google Scholar
Pamer, E. G. Immune responses to Listeria monocytogenes . Nature Rev. Immunol.4, 812–823 (2004) ArticleCAS Google Scholar
Perrin, A. J., Jiang, X., Birmingham, C. L., So, N. S. & Brumell, J. H. Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr. Biol.14, 806–811 (2004) ArticleCASPubMed Google Scholar
Hamon, M., Bierne, H. & Cossart, P. Listeria monocytogenes: a multifaceted model. Nature Rev. Microbiol.4, 423–434 (2006) ArticleCAS Google Scholar
Jankowski, A., Scott, C. C. & Grinstein, S. Determinants of the phagosomal pH in neutrophils. J. Biol. Chem.277, 6059–6066 (2002) ArticleCASPubMed Google Scholar
Hackam, D. J. et al. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J. Biol. Chem.272, 29810–29820 (1997) ArticleCASPubMed Google Scholar
Gordon, A. H., Hart, P. D. & Young, M. R. Ammonia inhibits phagosome–lysosome fusion in macrophages. Nature286, 79–80 (1980) ArticleADSCASPubMed Google Scholar
Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct.23, 33–42 (1998) ArticleCASPubMed Google Scholar
Beauregard, K. E., Lee, K. D., Collier, R. J. & Swanson, J. A. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes . J. Exp. Med.186, 1159–1163 (1997) ArticleCASPubMedPubMed Central Google Scholar
Alberti-Segui, C., Goeden, K. R. & Higgins, D. E. Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell. Microbiol.9, 179–195 (2007) ArticleCASPubMed Google Scholar
Birmingham, C. L. et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy3, 442–451 (2007) ArticleCASPubMed Google Scholar
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature432, 1032–1036 (2004) ArticleADSCASPubMed Google Scholar
de Chastellier, C. & Berche, P. Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect. Immun.62, 543–553 (1994) CASPubMedPubMed Central Google Scholar
Brumell, J. H., Rosenberger, C. M., Gotto, G. T., Marcus, S. L. & Finlay, B. B. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell. Microbiol.3, 75–84 (2001) ArticleCASPubMed Google Scholar
Kaniuk, N. A. et al. Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes56, 930–939 (2007) ArticleCASPubMed Google Scholar
Bishop, D. K. & Hinrichs, D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J. Immunol.139, 2005–2009 (1987) CASPubMed Google Scholar
Skoble, J., Portnoy, D. A. & Welch, M. D. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell Biol.150, 527–538 (2000) ArticleCASPubMedPubMed Central Google Scholar
Cheng, L. W. & Portnoy, D. A. Drosophila S2 cells: an alternative infection model for Listeria monocytogenes . Cell. Microbiol.5, 875–885 (2003) ArticleCASPubMed Google Scholar
Jones, S. & Portnoy, D. A. Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect. Immun.62, 5608–5613 (1994) CASPubMedPubMed Central Google Scholar
Lauer, P., Chow, M. Y., Loessner, M. J., Portnoy, D. A. & Calendar, R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol.184, 4177–4186 (2002) ArticleCASPubMedPubMed Central Google Scholar
Camilli, A., Tilney, L. G. & Portnoy, D. A. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol.8, 143–157 (1993) ArticleCASPubMedPubMed Central Google Scholar
Smith, G. A. et al. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun.63, 4231–4237 (1995) CASPubMedPubMed Central Google Scholar
Dramsi, S., Levi, S., Triller, A. & Cossart, P. Entry of Listeria monocytogenes into neurons occurs by cell-to-cell spread: an in vitro study. Infect. Immun.66, 4461–4468 (1998) CASPubMedPubMed Central Google Scholar
Nato, F. et al. Production and characterization of neutralizing and nonneutralizing monoclonal antibodies against listeriolysin O. Infect. Immun.59, 4641–4646 (1991) CASPubMedPubMed Central Google Scholar
Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19, 5720–5728 (2000) ArticleCASPubMedPubMed Central Google Scholar