Immune responses to Listeria monocytogenes (original) (raw)
Murray, E. G. D., Webb, R. A. & Swann, M. B. R. A disease of rabbits characterized by a large mononuclear monocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes. J. Pathol. Bacteriol.29, 407–439 (1926). Article Google Scholar
Pirie, J. H. H. A new disease of veld rodents. 'Tiger River Disease'. Publ. S. Afr. Inst. Med. Res.3, 163–186 (1927). Google Scholar
Bibb, W. F. et al. Analysis of clinical and food-borne isolates of Listeria monocytogenes in the United States by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Appl. Environ. Microbiol.56, 2133–2141 (1990). CASPubMedPubMed Central Google Scholar
Sixl, W., Stunzner, D. & Withalm, H. Epidemiologic and serologic study of listeriosis in man and domestic and wild animals in Austria. J. Hyg. Epidemiol. Microbiol. Immunol.22, 460–469 (1978). CASPubMed Google Scholar
Jakowski, R. M. & Wyand, D. S. Listeriosis associated with canine distemper in a gray fox. J. Am. Vet. Med. Assoc.159, 626–628 (1971). CASPubMed Google Scholar
Glaser, P. et al. Comparative genomics of Listeria species. Science294, 849–852 (2001). CASPubMed Google Scholar
Gaillard, J. L., Berche, P., Frehel, C., Gouin, E. & Cossart, P. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell65, 1127–1141 (1991). ArticleCASPubMed Google Scholar
Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science292, 1722–1725 (2001). ArticleCASPubMed Google Scholar
Shen, Y., Naujokas, M., Park, M. & Ireton, K. InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell103, 501–510 (2000). ArticleCASPubMed Google Scholar
Bielecki, J., Youngman, P., Connelly, P. & Portnoy, D. A. _Bacillus subtilis_expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature345, 175–176 (1990). ArticleCASPubMed Google Scholar
O'Riordan, M., Yi, C. H., Gonzales, R., Lee, K. D. & Portnoy, D. A. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl Acad. Sci. USA99, 13861–13866 (2002). ArticleCASPubMedPubMed Central Google Scholar
Berche, P., Gaillard, J. L. & Sansonetti, P. J. Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T-cell-mediated immunity. J. Immunol.138, 2266–2271 (1987). CASPubMed Google Scholar
Chico-Calero, I. et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl Acad. Sci. USA99, 431–436 (2002). ArticleCASPubMed Google Scholar
Domann, E. et al. A novel bacterial virulence gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J.11, 1981–1990 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kocks, C. et al. _L. monocytogenes_-induced actin assembly requires the actA gene product, a surface protein. Cell68, 521–531 (1992). ArticleCASPubMed Google Scholar
Goossens, P. L. & Milon, G. Induction of protective CD8+ T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int. Immunol.4, 1413–1418 (1992). ArticleCASPubMed Google Scholar
Unanue, E. R. Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. Immunol. Rev.158, 11–25 (1997). ArticleCASPubMed Google Scholar
Nickol, A. D. & Bonventre, P. F. Anomalous high native resistance of athymic mice to bacterial pathogens. Infect. Immun.18, 636–645 (1977). CASPubMedPubMed Central Google Scholar
Bancroft, G. J., Schreiber, R. D. & Unanue, E. R. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the SCID mouse. Immunol. Rev.124, 5–24 (1991). ArticleCASPubMed Google Scholar
Tripp, C. S., Wolf, S. F. & Unanue, E. R. Interleukin 12 and tumor necrosis factor α are costimulators of interferon γ production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc. Natl Acad. Sci. USA90, 3725–3729 (1993). ArticleCASPubMedPubMed Central Google Scholar
Buchmeier, N. A. & Schreiber, R. D. Requirement of endogenous interferon-γ production for resolution of Listeria monocytogenes infection. Proc. Natl Acad. Sci. USA82, 7404–7408 (1985). ArticleCASPubMedPubMed Central Google Scholar
Havell, E. A. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J. Immunol.143, 2894–2899 (1989). CASPubMed Google Scholar
Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell73, 457–467 (1993). ArticleCASPubMed Google Scholar
Rothe, J. et al. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature364, 798–802 (1993). ArticleCASPubMed Google Scholar
Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFN γ. Immunity3, 109–117 (1995). ArticleCASPubMed Google Scholar
Xanthoulea, S. et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J. Exp. Med.200, 367–376 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ehlers, S. et al. The lymphotoxin β receptor is critically involved in controlling infections with the intracellular pathogens Mycobacterium tuberculosis and Listeria monocytogenes. J. Immunol.170, 5210–5218 (2003). ArticleCASPubMed Google Scholar
Zheng, S. J., Wang, P., Tsabary, G. & Chen, Y. H. Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J. Clin. Invest.113, 58–64 (2004). ArticleCASPubMedPubMed Central Google Scholar
Carrero, J. A., Calderon, B. & Unanue, E. R. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med.200, 535–540 (2004). ArticleCASPubMedPubMed Central Google Scholar
O'Connell, R. M. et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med.200, 437–445 (2004). ArticleCASPubMedPubMed Central Google Scholar
Auerbuch, V., Brockstedt, D. G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D. A. Mice lacking the type I Interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med.200, 527–533 (2004). References 30 to 32 show that mice lacking the receptor for type I IFNs have increased resistance to infection withL. monocytogenes. ArticleCASPubMedPubMed Central Google Scholar
Stockinger, S. et al. Production of type I IFN sensitizes macrophages to cell death induced by Listeria monocytogenes. J. Immunol.169, 6522–6529 (2002). ArticleCASPubMed Google Scholar
Conlan, J. W. & North, R. J. Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J. Exp. Med.179, 259–268 (1994). ArticleCASPubMed Google Scholar
Rogers, H. W. & Unanue, E. R. Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect. Immun.61, 5090–5096 (1993). CASPubMedPubMed Central Google Scholar
Czuprynski, C. J., Brown, J. F., Maroushek, N., Wagner, R. D. & Steinberg, H. Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection. J. Immunol.152, 1836–1846 (1994). CASPubMed Google Scholar
North, R. J. The relative importance of blood monocytes and fixed macrophages to the expression of cell-mediated immunity to infection. J. Exp. Med.132, 521–534 (1970). ArticleCASPubMedPubMed Central Google Scholar
Rosen, H., Gordon, S. & North, R. J. Exacerbation of murine listeriosis by a monoclonal antibody specific for the type 3 complement receptor of myelomonocytic cells. Absence of monocytes at infective foci allows Listeria to multiply in nonphagocytic cells. J. Exp. Med.170, 27–37 (1989). ArticleCASPubMed Google Scholar
Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med.186, 1757–1762 (1997). ArticleCASPubMedPubMed Central Google Scholar
Miyamoto, M. et al. Neutrophilia in LFA-1-deficient mice confers resistance to listeriosis: possible contribution of granulocyte-colony-stimulating factor and IL-17. J. Immunol.170, 5228–5234 (2003). ArticleCASPubMed Google Scholar
Endres, R. et al. Listeriosis in p47phox−/− and TRp55−/− mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity7, 419–432 (1997). ArticleCASPubMed Google Scholar
Shiloh, M. U. et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity10, 29–38 (1999). ArticleCASPubMed Google Scholar
Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity19, 59–70 (2003). This study shows that a novel DC population that produces iNOS and TNF is recruited to sites of infection withL. monocytogenes. ArticleCASPubMed Google Scholar
Seki, E. et al. Critical roles of myeloid differentiation factor 88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J. Immunol.169, 3863–3868 (2002). Together with reference 47, this paper reports on the impact of MyD88 deficiency on immune defence against infection withL. monocytogenes. ArticleCASPubMed Google Scholar
Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410, 1099–1103 (2001). ArticleCASPubMed Google Scholar
Edelson, B. T. & Unanue, E. R. MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J. Immunol.169, 3869–3875 (2002). ArticleCASPubMed Google Scholar
Serbina, N. V. et al. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity19, 891–901 (2003). This study shows that the earliest innate immune responses do not depend on MyD88-mediated signals. ArticleCASPubMed Google Scholar
Tsuji, N. M. et al. Roles of caspase-1 in Listeria infection in mice. Int. Immunol.16, 335–343 (2004). ArticleCASPubMed Google Scholar
Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell110, 191–202 (2002). ArticleCASPubMed Google Scholar
Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature416, 194–199 (2002). ArticleCASPubMed Google Scholar
Chin, A. I. et al. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature416, 190–194 (2002). References 51 and 52 show that RIP2-mediated signals contribute to the innate immune response to infection withL. monocytogenes. ArticleCASPubMed Google Scholar
Way, S. S., Kollmann, T. R., Hajjar, A. M. & Wilson, C. B. Protective cell-mediated immunity to Listeria monocytogenes in the absence of myeloid differentiation factor 88. J. Immunol.171, 533–537 (2003). Although MyD88 has a central role in innate immune defence, this study shows that CD8+ T-cell responses are maintained in mice that lack MyD88. ArticleCASPubMed Google Scholar
Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB leads to multifocal defects in immune responses. Cell80, 321–330 (1995). ArticleCASPubMed Google Scholar
Hauf, N., Goebel, W., Fiedler, F., Sokolovic, Z. & Kuhn, M. Listeria monocytogenes infection of P388D1 macrophages results in a biphasic NF-κB (RelA/p50) activation induced by lipoteichoic acid and bacterial phospholipases and mediated by IκBα and IκBβ degradation. Proc. Natl Acad. Sci. USA94, 9394–9399 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kayal, S. et al. Listeriolysin O secreted by Listeria monocytogenes induces NF-κB signalling by activating the IκB kinase complex. Mol. Microbiol.44, 1407–1419 (2002). ArticleCASPubMed Google Scholar
Aichele, P. et al. Macrophages of the splenic marginal zone are essential for trapping of blood-borne particulate antigen but dispensable for induction of specific T cell responses. J. Immunol.171, 1148–1155 (2003). ArticleCASPubMed Google Scholar
Conlan, J. W. Early pathogenesis of Listeria monocytogenes infection in the mouse spleen. J. Med. Microbiol.44, 295–302 (1996). ArticleCASPubMed Google Scholar
Zhong, M. X., Kuziel, W. A., Pamer, E. G. & Serbina, N. V. Chemokine receptor 5 is dispensable for innate and adaptive immune responses to Listeria monocytogenes infection. Infect. Immun.72, 1057–1064 (2004). ArticleCASPubMedPubMed Central Google Scholar
Merrick, J. C., Edelson, B. T., Bhardwaj, V., Swanson, P. E. & Unanue, E. R. Lymphocyte apoptosis during early phase of Listeria infection in mice. Am. J. Pathol.151, 785–792 (1997). CASPubMedPubMed Central Google Scholar
Jiang, J., Lau, L. L. & Shen, H. Selective depletion of nonspecific T cells during the early stage of immune responses to infection. J. Immunol.171, 4352–4358 (2003). ArticleCASPubMed Google Scholar
Berg, R. E., Crossley, E., Murray, S. & Forman, J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med.198, 1583–1593 (2003). This study shows that non-specific memory T cells are a principal source of IFN-γ early in primary infection withL. monocytogenes. ArticleCASPubMedPubMed Central Google Scholar
McGregor, D. D., Koster, F. T. & Mackaness, G. B. The short lived small lymphocyte as a mediator of cellular immunity. Nature228, 855–856 (1970). ArticleCASPubMed Google Scholar
Edelson, B. T. & Unanue, E. R. Intracellular antibody neutralizes Listeria growth. Immunity14, 503–512 (2001). ArticleCASPubMed Google Scholar
Egan, P. J. & Carding, S. R. Downmodulation of the inflammatory response to bacterial infection by γδ T cells cytotoxic for activated macrophages. J. Exp. Med.191, 2145–2158 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ladel, C. H., Flesch, I. E., Arnoldi, J. & Kaufmann, S. H. Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection. J. Immunol.153, 3116–3122 (1994). CASPubMed Google Scholar
Harty, J. T., Schreiber, R. D. & Bevan, M. J. CD8 T cells can protect against an intracellular bacterium in an interferon γ-independent fashion. Proc. Natl Acad. Sci. USA89, 11612–11616 (1992). ArticleCASPubMedPubMed Central Google Scholar
Portnoy, D. A., Schreiber, R. D., Connelly, P. & Tilney, L. G. γ-interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. J. Exp. Med.170, 2141–2146 (1989). ArticleCASPubMed Google Scholar
Collazo, C. M. et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med.194, 181–188 (2001). This study shows that LRG47 has an essential role in defence against infection withL. monocytogenes. ArticleCASPubMedPubMed Central Google Scholar
Kerksiek, K. M., Busch, D. H., Pilip, I. M., Allen, S. E. & Pamer, E. G. H2–M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J. Exp. Med.190, 195–204 (1999). ArticleCASPubMedPubMed Central Google Scholar
Seaman, M. S., Wang, C. R. & Forman, J. MHC class Ib-restricted CTL provide protection against primary and secondary Listeria monocytogenes infection. J. Immunol.165, 5192–5201 (2000). ArticleCASPubMed Google Scholar
Finelli, A. et al. MHC class I restricted T cell responses to Listeria monocytogenes, an intracellular bacterial pathogen. Immunol. Res.19, 211–223 (1999). ArticleCASPubMed Google Scholar
Villanueva, M. S., Sijts, A. J. & Pamer, E. G. Listeriolysin is processed efficiently into an MHC class I-associated epitope in _Listeria monocytogenes_-infected cells. J. Immunol.155, 5227–5233 (1995). CASPubMed Google Scholar
Decatur, A. L. & Portnoy, D. A. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science290, 992–995 (2000). ArticleCASPubMed Google Scholar
Bubert, A., Kuhn, M., Goebel, W. & Kohler, S. Structural and functional properties of the p60 proteins from different Listeria species. J. Bacteriol.174, 8166–8171 (1992). ArticleCASPubMedPubMed Central Google Scholar
Sijts, A. J., Pilip, I. & Pamer, E. G. The _Listeria monocytogenes_-secreted p60 protein is an N-end rule substrate in the cytosol of infected cells. Implications for major histocompatibility complex class I antigen processing of bacterial proteins. J. Biol. Chem.272, 19261–19268 (1997). ArticleCASPubMed Google Scholar
Villanueva, M. S., Fischer, P., Feen, K. & Pamer, E. G. Efficiency of MHC class I antigen processing: a quantitative analysis. Immunity1, 479–489 (1994). ArticleCASPubMed Google Scholar
Vijh, S., Pilip, I. M. & Pamer, E. G. Effect of antigen-processing efficiency on in vivo T cell response magnitudes. J. Immunol.160, 3971–3977 (1998). CASPubMed Google Scholar
Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity8, 353–362 (1998). ArticleCASPubMed Google Scholar
Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol.165, 6833–6839 (2000). ArticleCASPubMed Google Scholar
Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nature Immunol.3, 619–626 (2002). References 81 and 82 show that the clonal expansion and contraction of CD8+ T cells occurs even when bacterial infections are attenuated by the early administration of antibiotics. ArticleCAS Google Scholar
Wong, P. & Pamer, E. G. Antigen-independent CD8 T cell proliferation. J. Immunol.166, 5864–5868 (2001). ArticleCASPubMed Google Scholar
Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation. Nature Immunol.5, 809–817 (2004). ArticleCAS Google Scholar
Busch, D. H., Kerksiek, K. M. & Pamer, E. G. Differing roles of inflammation and antigen in T cell proliferation and memory generation. J. Immunol.164, 4063–4070 (2000). ArticleCASPubMed Google Scholar
Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol.2, 415–422 (2001). ArticleCAS Google Scholar
Wong, P. & Pamer, E. G. Disparate in vitro and in vivo requirements for IL-2 during antigen-independent CD8 T cell expansion. J. Immunol.172, 2171–2176 (2004). ArticleCASPubMed Google Scholar
Badovinac, V. P. & Harty, J. T. Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes in the absence of perforin and IFN-γ. J. Immunol.164, 6444–6452 (2000). ArticleCASPubMed Google Scholar
Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science290, 1354–1358 (2000). This study shows that effector molecules produced by CD8+ T cells can influence the magnitude of the CD8+ T-cell response. ArticleCASPubMed Google Scholar
Wong, P. & Pamer, E. G. Feedback regulation of pathogen-specific T cell priming. Immunity18, 499–511 (2003). This study shows thatin vivoT-cell priming occurs only during a short time period following infection. ArticleCASPubMed Google Scholar
Lenz, L. L., Butz, E. A. & Bevan, M. J. Requirements for bone marrow-derived antigen-presenting cells in priming cytotoxic T cell responses to intracellular pathogens. J. Exp. Med.192, 1135–1142 (2000). ArticleCASPubMedPubMed Central Google Scholar
Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity17, 211–220 (2002). This paper shows that, during infection withL. monocytogenes, thein vivopriming of CD8+ T cells requires antigen presentation by CD11c-expressing antigen-presenting cells. ArticleCASPubMedPubMed Central Google Scholar
von Koenig, C. H., Finger, H. & Hof, H. Failure of killed Listeria monocytogenes vaccine to produce protective immunity. Nature297, 233–234 (1982). ArticleCASPubMed Google Scholar
Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science294, 1735–1739 (2001). This study shows that heat-killedL. monocytogeneseffectively primes CD8+ T cells, but these primed T cells do not efficiently undergo differentiation into effector T cells. ArticleCASPubMed Google Scholar
Rolph, M. S. & Kaufmann, S. H. CD40 signaling converts a minimally immunogenic antigen into a potent vaccine against the intracellular pathogen Listeria monocytogenes. J. Immunol.166, 5115–5121 (2001). ArticleCASPubMed Google Scholar
Brzoza, K. L., Rockel, A. B. & Hiltbold, E. M. Cytoplasmic entry of Listeria monocytogenes enhances dendritic cell maturation and T cell differentiation and function. J. Immunol.173, 2641–2651 (2004). ArticleCASPubMed Google Scholar
Mittrucker, H. W., Kursar, M., Kohler, A., Hurwitz, R. & Kaufmann, S. H. Role of CD28 for the generation and expansion of antigen-specific CD8+ T lymphocytes during infection with Listeria monocytogenes. J. Immunol.167, 5620–5627 (2001). ArticleCASPubMed Google Scholar
Shedlock, D. J. et al. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J. Immunol.170, 2053–2063 (2003). ArticleCASPubMed Google Scholar
Mittrucker, H. W. et al. Inducible costimulator protein controls the protective T cell response against Listeria monocytogenes. J. Immunol.169, 5813–5817 (2002). ArticleCASPubMed Google Scholar
Hamilton, S. E., Tvinnereim, A. R. & Harty, J. T. Listeria monocytogenes infection overcomes the requirement for CD40 ligand in exogenous antigen presentation to CD8+ T cells. J. Immunol.167, 5603–5609 (2001). ArticleCASPubMed Google Scholar
Sun, J. C. & Bevan, M. J. Long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J. Immunol.172, 3385–3389 (2004). ArticleCASPubMed Google Scholar
Pope, C. et al. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J. Immunol.166, 3402–3409 (2001). ArticleCASPubMed Google Scholar
Huster, K. M. et al. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl Acad. Sci. USA101, 5610–5615 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kursar, M. et al. Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J. Immunol.168, 6382–6387 (2002). ArticleCASPubMed Google Scholar
Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science300, 337–339 (2003). ArticleCASPubMed Google Scholar
Sun, J. C., Williams, M. A. & Bevan, M. J. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nature Immunol.5, 927–933 (2004). References 105 to 107 characterize the contribution of CD4+ T cells to the generation of memory CD8+ T cells after infection withL. monocytogenes. ArticleCAS Google Scholar
Wong, P., Lara-Tejero, M., Ploss, A., Leiner, I. & Pamer, E. G. Rapid development of T cell memory. J. Immunol.172, 7239–7245 (2004). ArticleCASPubMed Google Scholar
Kerksiek, K. M., Ploss, A., Leiner, I., Busch, D. H. & Pamer, E. G. H2–M3-restricted memory T cells: persistence and activation without expansion. J. Immunol.170, 1862–1869 (2003). ArticleCASPubMed Google Scholar
Busch, D. H. & Pamer, E. G. MHC class I/peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol.160, 4441–4448 (1998). CASPubMed Google Scholar
Busch, D. H., Pilip, I. & Pamer, E. G. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J. Exp. Med.188, 61–70 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kursar, M. et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med.196, 1585–1592 (2002). This study shows that regulatory T cells restrict the development ofL. monocytogenes-specific memory T cells. ArticleCASPubMedPubMed Central Google Scholar
Kursar, M., Kohler, A., Kaufmann, S. H. & Mittrucker, H. W. Depletion of CD4+ T cells during immunization with nonviable Listeria monocytogenes causes enhanced CD8+ T cell-mediated protection against listeriosis. J. Immunol.172, 3167–3172 (2004). ArticleCASPubMed Google Scholar
Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFN γ. Immunity3, 109–117 (1995). ArticleCASPubMed Google Scholar
White, D. W., Badovinac, V. P., Kollias, G. & Harty, J. T. Antilisterial activity of CD8+ T cells derived from TNF-deficient and TNF/perforin double-deficient mice. J. Immunol.165, 5–9 (2000). ArticleCASPubMed Google Scholar
White, D. W. & Harty, J. T. Perforin-deficient CD8+ T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-γ but requires TNF-α. J. Immunol.160, 898–905 (1998). CASPubMed Google Scholar
Jensen, E. R. et al. Fas (CD95)-dependent cell-mediated immunity to Listeria monocytogenes. Infect. Immun.66, 4143–4150 (1998). CASPubMedPubMed Central Google Scholar
Jiang, J., Zenewicz, L. A., San Mateo, L. R., Lau, L. L. & Shen, H. Activation of antigen-specific CD8 T cells results in minimal killing of bystander bacteria. J. Immunol.171, 6032–6038 (2003). This study shows that CD8+ T cells only killL. monocytogenesbacteria that express their cognate antigen, showing the specificity of CD8+ T cells during the course of active bacterial infection. ArticleCASPubMed Google Scholar
De Libero, G. & Kaufmann, S. H. Antigen-specific Lyt-2+ cytolytic T lymphocytes from mice infected with the intracellular bacterium Listeria monocytogenes. J. Immunol.137, 2688–2694 (1986). CASPubMed Google Scholar
Kaufmann, S. H., Rodewald, H. R., Hug, E. & De Libero, G. Cloned Listeria monocytogenes specific non-MHC-restricted Lyt-2+ T cells with cytolytic and protective activity. J. Immunol.140, 3173–3179 (1988). CASPubMed Google Scholar
Pamer, E. G., Wang, C. R., Flaherty, L., Lindahl, K. F. & Bevan, M. J. H-2M3 presents a Listeria monocytogenes peptide to cytotoxic T lymphocytes. Cell70, 215–223 (1992). ArticleCASPubMed Google Scholar
Kurlander, R. J., Shawar, S. M., Brown, M. L. & Rich, R. R. Specialized role for a murine class I-b MHC molecule in prokaryotic host defenses. Science257, 678–679 (1992). ArticleCASPubMed Google Scholar
Lindahl, K. F., Dabhi, V. M., Hovik, R., Smith, G. P. & Wang, C. R. Presentation of _N_-formylated peptides by H2–M3. Biochem. Soc. Trans.23, 669–674 (1995). ArticleCASPubMed Google Scholar
Lenz, L. L., Dere, B. & Bevan, M. J. Identification of an H2–M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity5, 63–72 (1996). ArticleCASPubMedPubMed Central Google Scholar
Princiotta, M. F., Lenz, L. L., Bevan, M. J. & Staerz, U. D. H2–M3 restricted presentation of a _Listeria_-derived leader peptide. J. Exp. Med.187, 1711–1719 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gulden, P. H. et al. A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2–M3 MHC class Ib molecule. Immunity5, 73–79 (1996). ArticleCASPubMed Google Scholar
D'Orazio, S. E., Velasquez, M., Roan, N. R., Naveiras-Torres, O. & Starnbach, M. N. The Listeria monocytogenes lemA gene product is not required for intracellular infection or to activate fMIGWII-specific T cells. Infect. Immun.71, 6721–6727 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ploss, A. et al. Promiscuity of MHC class Ib-restricted T cell responses. J. Immunol.171, 5948–5955 (2003). ArticleCASPubMed Google Scholar
Kerksiek, K. M., Busch, D. H. & Pamer, E. G. Variable immunodominance hierarchies for H2–M3-restricted _N_-formyl peptides following bacterial infection. J. Immunol.166, 1132–1140 (2001). ArticleCASPubMed Google Scholar
Hamilton, S. E., Porter, B. B., Messingham, K. A., Badovinac, V. P. & Harty, J. T. MHC class Ia-restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2–M3)-restricted memory response. Nature Immunol.5, 159–168 (2004). ArticleCAS Google Scholar
Huleatt, J. W., Pilip, I., Kerksiek, K. & Pamer, E. G. Intestinal and splenic T cell responses to enteric Listeria monocytogenes infection: distinct repertoires of responding CD8 T lymphocytes. J. Immunol.166, 4065–4073 (2001). ArticleCASPubMed Google Scholar