Recent progress in the biology and physiology of sirtuins (original) (raw)
Rine, J., Strathern, J. N., Hicks, J. B. & Herskowitz, I. A suppressor of mating-type locus mutations in Saccharomyces cerevisiae: evidence for and identification of cryptic mating-type loci. Genetics93, 877–901 (1979) CASPubMedPubMed Central Google Scholar
Kennedy, B. K., Austriaco, N. R., Zhang, J. & Guarente, L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae . Cell80, 485–496 (1995) CASPubMed Google Scholar
Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13, 2570–2580 (1999) CASPubMedPubMed Central Google Scholar
Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature403, 795–800 (2000) ArticleADSCASPubMed Google Scholar
Guarente, L. & Picard, F. Calorie restriction—the SIR2 connection. Cell120, 473–482 (2005) CASPubMed Google Scholar
Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One3, e1759 (2008) ADSPubMedPubMed Central Google Scholar
Bass, T. M., Weinkove, D., Houthoofd, K., Gems, D. & Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans . Mech. Ageing Dev.128, 546–552 (2007) CASPubMed Google Scholar
Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol.2, E296 (2004) PubMedPubMed Central Google Scholar
Haigis, M. C. & Guarente, L. P. Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev.20, 2913–2921 (2006) CASPubMed Google Scholar
Denu, J. M. Linking chromatin function with metabolic networks: Sir2 family of NAD+-dependent deacetylases. Trends Biochem. Sci.28, 41–48 (2003) CASPubMed Google Scholar
Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell124, 315–329 (2006) CASPubMed Google Scholar
Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature452, 492–496 (2008) ADSCASPubMedPubMed Central Google Scholar
Yuan, Z., Zhang, X., Sengupta, N., Lane, W. S. & Seto, E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell27, 149–162 (2007) CASPubMedPubMed Central Google Scholar
Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell14, 312–323 (2008) CASPubMedPubMed Central Google Scholar
Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell135, 907–918 (2008)Refs 14 and 15 describe a role for SIRT1 in genomic stability and how disruption of this activity might contribute to cancer and ageing. CASPubMedPubMed Central Google Scholar
Murayama, A. et al. Epigenetic control of rDNA loci in response to intracellular energy status. Cell133, 627–639 (2008) CASPubMed Google Scholar
Vaquero, A. et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature450, 440–444 (2007) ADSCASPubMed Google Scholar
Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303, 2011–2015 (2004) ADSCASPubMed Google Scholar
Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell116, 551–563 (2004) CASPubMed Google Scholar
Westerheide, S. D., Anckar, J., Stevens, S. M., Sistonen, L. & Morimoto, R. I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science323, 1063–1066 (2009) ADSCASPubMedPubMed Central Google Scholar
Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell107, 137–148 (2001) CASPubMed Google Scholar
Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell107, 149–159 (2001) CASPubMed Google Scholar
Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science306, 2105–2108 (2004) ADSCASPubMed Google Scholar
Chen, W. Y. et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell123, 437–448 (2005) CASPubMed Google Scholar
Yamakuchi, M., Ferlito, M. & Lowenstein, C. J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl Acad. Sci. USA105, 13421–13426 (2008) ADSCASPubMedPubMed Central Google Scholar
Michan, S. & Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J.404, 1–13 (2007) CASPubMed Google Scholar
Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J.23, 2369–2380 (2004) CASPubMedPubMed Central Google Scholar
Langley, E. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J.21, 2383–2396 (2002) CASPubMedPubMed Central Google Scholar
Kawahara, T. L. et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell136, 62–74 (2009) CASPubMedPubMed Central Google Scholar
Chua, K. F. et al. Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab.2, 67–76 (2005) CASPubMed Google Scholar
Feige, J. N. & Auwerx, J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr. Opin. Cell Biol.20, 303–309 (2008) CASPubMedPubMed Central Google Scholar
Prozorovski, T. et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nature Cell Biol.10, 385–394 (2008) CASPubMed Google Scholar
Han, M. K. et al. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell2, 241–251 (2008) CASPubMedPubMed Central Google Scholar
Kuzmichev, A. et al. Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proc. Natl Acad. Sci. USA102, 1859–1864 (2005) ADSCASPubMedPubMed Central Google Scholar
Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem.280, 16456–16460 (2005) CASPubMed Google Scholar
Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature434, 113–118 (2005) ADSCASPubMed Google Scholar
Rodgers, J. T. & Puigserver, P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc. Natl Acad. Sci. USA104, 12861–12866 (2007) ADSCASPubMedPubMed Central Google Scholar
Liu, Y. et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature456, 269–273 (2008)A detailed look at the role of protein acetylation and SIRT1-dependent deacetylation in the hepatic response to starvation. ADSCASPubMedPubMed Central Google Scholar
Moynihan, K. A. et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab.2, 105–117 (2005) CASPubMed Google Scholar
Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol.4, e31 (2006) PubMed Google Scholar
Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell126, 941–954 (2006) CASPubMed Google Scholar
Ahuja, N. et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem.282, 33583–33592 (2007) CASPubMed Google Scholar
Rodgers, J. T., Lerin, C., Gerhart-Hines, Z. & Puigserver, P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett.582, 46–53 (2008) CASPubMed Google Scholar
Lee, I. H. et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl Acad. Sci. USA105, 3374–3379 (2008) ADSCASPubMedPubMed Central Google Scholar
Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl Acad. Sci. USA103, 10224–10229 (2006) ADSCASPubMedPubMed Central Google Scholar
Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA103, 10230–10235 (2006) ADSCASPubMedPubMed Central Google Scholar
Ahn, B. H. et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl Acad. Sci. USA105, 14447–14452 (2008) ADSCASPubMedPubMed Central Google Scholar
Lombard, D. B. et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol.27, 8807–8814 (2007) CASPubMedPubMed Central Google Scholar
Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell137, 560–570 (2009)A recent demonstration of the expanding connection between sirtuin family members and metabolic regulation. CASPubMedPubMed Central Google Scholar
Crujeiras, A. B., Parra, D., Goyenechea, E. & Martinez, J. A. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur. J. Clin. Invest.38, 672–678 (2008) CASPubMed Google Scholar
Civitarese, A. E. et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med.4, e76 (2007) PubMedPubMed Central Google Scholar
Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell134, 317–328 (2008) CASPubMed Google Scholar
Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell134, 329–340 (2008)Refs 53 and 54 provide the first link between sirtuins and circadian rhythms. CASPubMedPubMed Central Google Scholar
Banks, A. S. et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab.8, 333–341 (2008) CASPubMedPubMed Central Google Scholar
Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschop, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA105, 9793–9798 (2008) ADSCASPubMedPubMed Central Google Scholar
Sun, C. et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab.6, 307–319 (2007) CASPubMed Google Scholar
Weyrich, P. et al. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention — the TULIP Study. BMC Med. Genet.9 10.1186/1471-2350-9-100 (2008)
Peeters, A. V. et al. Association of SIRT1 gene variation with visceral obesity. Hum. Genet.124, 431–436 (2008) CASPubMed Google Scholar
Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell127, 1109–1122 (2006) CASPubMed Google Scholar
Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 458, 1056–1060 (2009)Provides a link between sirtuins and other energy sensing pathways in the cell.
Feige, J. N. et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab.8, 347–358 (2008) CASPubMed Google Scholar
Milne, J. C. et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature450, 712–716 (2007) ADSCASPubMedPubMed Central Google Scholar
Wang, R. H. et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol. Cell32, 11–20 (2008) PubMedPubMed Central Google Scholar
Firestein, R. et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One3, e2020 (2008) ADSPubMedPubMed Central Google Scholar
Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell28, 91–106 (2007) PubMed Google Scholar
Potente, M. et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev.21, 2644–2658 (2007) CASPubMedPubMed Central Google Scholar
Mattagajasingh, I. et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA104, 14855–14860 (2007) ADSCASPubMedPubMed Central Google Scholar
Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science310, 314–317 (2005) ADSCASPubMed Google Scholar
Vakhrusheva, O. et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res.102, 703–710 (2008) CASPubMed Google Scholar
Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest.119, 524–530 (2009) CASPubMedPubMed Central Google Scholar
Araki, T., Sasaki, Y. & Milbrandt, J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science305, 1010–1013 (2004) ADSCASPubMed Google Scholar
Fainzilber, M. & Twiss, J. L. Tracking in the Wlds—the hunting of the SIRT and the luring of the Draper. Neuron50, 819–821 (2006) CASPubMed Google Scholar
Li, Y., Xu, W., McBurney, M. W. & Longo, V. D. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab.8, 38–48 (2008) PubMedPubMed Central Google Scholar
van Ham, T. J. et al. C. elegans model identifies genetic modifiers of α-synuclein inclusion formation during aging. PLoS Genet.4, e1000027 (2008) PubMedPubMed Central Google Scholar
Kim, D. et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J.26, 3169–3179 (2007) CASPubMedPubMed Central Google Scholar
Outeiro, T. F. et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease. Science317, 516–519 (2007) ADSCASPubMed Google Scholar
Kim, J. E., Chen, J. & Lou, Z. DBC1 is a negative regulator of SIRT1. Nature451, 583–586 (2008)Refs 80 and 81 demonstrate the role of protein–protein interactions in modulating SIRT1 function and suggest that this mode of regulation probably exists for other sirtuins. ADSCASPubMed Google Scholar
Kim, E. J., Kho, J. H., Kang, M. R. & Um, S. J. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol. Cell28, 277–290 (2007) CASPubMed Google Scholar
Elliott, P. J. & Jirousek, M. Sirtuins: novel targets for metabolic disease. Curr. Opin. Investig. Drugs9, 371–378 (2008) CASPubMed Google Scholar