Finkel, T., Serrano, M. & Blasco, M. A. The common biology of cancer and ageing. Nature448, 767–774 (2007). ADSCASPubMed Google Scholar
Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell120, 513–522 (2005). CASPubMed Google Scholar
Kirkwood, T. B. Understanding the odd science of aging. Cell120, 437–447 (2005). CASPubMed Google Scholar
Arrighi, H. M., McLaughlin, T. & Leibman, C. Prevalence and impact of dementia-related functional limitations in the United States, 2001 to 2005. Alzheimer Dis. Assoc. Disord. doi:10.1097/WAD.0b013e3181a1a87d (in the press).
Sharpless, N. E. & DePinho, R. A. How stem cells age and why this makes us grow old. Nature Rev. Mol. Cell Biol.8, 703–713 (2007). CAS Google Scholar
Rossi, D. J., Jamieson, C. H. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell132, 681–696 (2008). CASPubMed Google Scholar
Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell132, 645–660 (2008). CASPubMed Google Scholar
Linton, P. J. & Dorshkind, K. Age-related changes in lymphocyte development and function. Nature Immunol.5, 133–139 (2004). CAS Google Scholar
Kollman, C. et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood98, 2043–2051 (2001). CASPubMed Google Scholar
Maslov, A. Y., Barone, T. A., Plunkett, R. J. & Pruitt, S. C. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J. Neurosci.24, 1726–1733 (2004). CASPubMedPubMed Central Google Scholar
Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature443, 448–452 (2006). ADSCASPubMedPubMed Central Google Scholar
Enwere, E. et al. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci.24, 8354–8365 (2004). CASPubMedPubMed Central Google Scholar
Cerletti, M., Shadrach, J. L., Jurga, S., Sherwood, R. & Wagers, A. J. Regulation and function of skeletal muscle stem cells. Cold Spring Harb. Symp. Quant. Biol.73, 317–322 (2008). CASPubMed Google Scholar
Di Iorio, A. et al. Sarcopenia: age-related skeletal muscle changes from determinants to physical disability. Int. J. Immunopathol. Pharmacol.19, 703–719 (2006). PubMed Google Scholar
Gopinath, S. D. & Rando, T. A. Aging of the skeletal muscle stem cell niche. Aging Cell7, 590–598 (2008). CASPubMed Google Scholar
Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature433, 760–764 (2005). ADSCASPubMed Google Scholar
Paik, J. H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell5, 540–553 (2009). CASPubMedPubMed Central Google Scholar
Tothova, Z. & Gilliland, D. G. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell1, 140–152 (2007). CASPubMed Google Scholar
Gan, B. et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl Acad. Sci. USA105, 19384–19389 (2008). ADSCASPubMedPubMed Central Google Scholar
Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature441, 475–482 (2006). CAS Google Scholar
Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96, 701–712 (1999). This paper describes the effect of critically short telomeres on lifespan and stress response in telomerase knockout mice. Mice with short telomeres have a reduced lifespan and a diminished regenerative capacity when stressed, such as by wound healing or haematopoietic ablation. CASPubMed Google Scholar
Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell97, 527–538 (1999). This paper shows that p53 mediates the cellular response to telomere dysfunction in both normal and neoplastic cells and that p53 deficiency ameliorates degenerative phenotypes. CASPubMed Google Scholar
Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature415, 45–53 (2002). References 28 and 29 describe the pro-ageing phenotype in mice with hyperactivep53. ADSCASPubMed Google Scholar
Kim, W. Y. & Sharpless, N. E. The regulation of INK4/ARF in cancer and aging. Cell127, 265–275 (2006). CASPubMed Google Scholar
Chen, M. L. et al. Erythroid dysplasia, megaloblastic anemia, and impaired lymphopoiesis arising from mitochondrial dysfunction. Blood114, 4045–4053 (2009). CASPubMedPubMed Central Google Scholar
Liu, J. et al. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature459, 387–392 (2009). This paper describes how in mice deficient in BMI1, mitochondrial dysfunction increases ROS levels and activates the DNA damage response, which can be partially rescued by antioxidant treatment. ADSCASPubMedPubMed Central Google Scholar
Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell128, 325–339 (2007). CASPubMed Google Scholar
Passos, J. F., Saretzki, G. & von Zglinicki, T. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res.35, 7505–7513 (2007). CASPubMedPubMed Central Google Scholar
McClintock, B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc. Natl Acad. Sci. USA25, 405–416 (1939). ADSCASPubMedPubMed Central Google Scholar
Szostak, J. W. & Blackburn, E. H. Cloning yeast telomeres on linear plasmid vectors. Cell29, 245–255 (1982). CASPubMed Google Scholar
Shampay, J., Szostak, J. W. & Blackburn, E. H. DNA sequences of telomeres maintained in yeast. Nature310, 154–157 (1984). ADSCASPubMed Google Scholar
Blackburn, E. H. Switching and signaling at the telomere. Cell106, 661–673 (2001). CASPubMed Google Scholar
Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell43, 405–413 (1985). In this seminal paper, telomerase activity and its ability to lengthen a (TTGGGG)noligonucleotide is identified inTetrahymenacell extracts. CASPubMed Google Scholar
Greider, C. W. & Blackburn, E. H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell51, 887–898 (1987). CASPubMed Google Scholar
Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res.25, 585–621 (1961). CASPubMed Google Scholar
Maser, R. S. & DePinho, R. A. Connecting chromosomes, crisis, and cancer. Science297, 565–569 (2002). ADSCASPubMed Google Scholar
Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science279, 349–352 (1998). This seminal paper showed that reintroduction of telomerase into human retinal epithelial cells and fibroblasts prevents senescence and immortalizes human cells. ADSCASPubMed Google Scholar
Counter, C. M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA95, 14723–14728 (1998). ADSCASPubMedPubMed Central Google Scholar
Cawthon, R. M., Smith, K. R., O'Brien, E., Sivatchenko, A. & Kerber, R. A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet361, 393–395 (2003). CASPubMed Google Scholar
Njajou, O. T. et al. Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J. Gerontol. A64, 860–864 (2009). Google Scholar
Atzmon, G. et al. Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc. Natl Acad. Sci. USA107 (suppl. 1), 1710–1717 (2010). ADSCASPubMed Google Scholar
Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA101, 17312–17315 (2004). ADSCASPubMedPubMed Central Google Scholar
Epel, E. S. et al. Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology31, 277–287 (2006). CASPubMed Google Scholar
Simon, N. M. et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol. Psychiatry60, 432–435 (2006). CASPubMed Google Scholar
Passos, J. F. & von Zglinicki, T. Mitochondria, telomeres and cell senescence. Exp. Gerontol.40, 466–472 (2005). CASPubMed Google Scholar
Oexle, K. & Zwirner, A. Advanced telomere shortening in respiratory chain disorders. Hum. Mol. Genet.6, 905–908 (1997). CASPubMed Google Scholar
Kirwan, M. & Dokal, I. Dyskeratosis congenita, stem cells and telomeres. Biochim. Biophys. Acta1792, 371–379 (2009). CASPubMedPubMed Central Google Scholar
Armanios, M. Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med.356, 1317–1326 (2007). CASPubMed Google Scholar
Yamaguchi, H. et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med.352, 1413–1424 (2005). CASPubMed Google Scholar
Rudolph, K. L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R. A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science287, 1253–1258 (2000). ADSCASPubMed Google Scholar
Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91, 25–34 (1997). This paper follows from the McClintock hypotheses, providing experimental proof that telomerase activity has an essential role in maintaining telomeres and preventing end-to-end recombination, using telomerase knockout mice. CASPubMed Google Scholar
Farazi, P. A., Glickman, J., Horner, J. & Depinho, R. A. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res.66, 4766–4773 (2006). CASPubMed Google Scholar
Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature392, 569–574 (1998). ADSCASPubMed Google Scholar
Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol.13, 1549–1556 (2003). CASPubMed Google Scholar
Hande, M. P., Samper, E., Lansdorp, P. & Blasco, M. A. Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J. Cell Biol.144, 589–601 (1999). CASPubMedPubMed Central Google Scholar
Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nature Genet.36, 877–882 (2004). CASPubMed Google Scholar
Wong, K. K. et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature421, 643–648 (2003). This paper demonstrates that ATM deficiency and telomere dysfunction act together to impair stem-cell and progenitor-cell reserves and negatively affect cellular and whole-organism viability. ADSCASPubMed Google Scholar
Rossi, D. J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature447, 725–729 (2007). This paper shows that accumulated DNA damage in HSCs impairs their regenerative capacity, and it provides evidence that ageing-associated functional stem-cell decline is linked to DNA damage. ADSCASPubMed Google Scholar
Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet.39, 99–105 (2007). CASPubMed Google Scholar
Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science309, 1253–1256 (2005). ADSCASPubMed Google Scholar
Ferron, S. et al. Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development131, 4059–4070 (2004). CASPubMed Google Scholar
Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature436, 1048–1052 (2005). ADSCASPubMedPubMed Central Google Scholar
Morales, M. et al. The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev.19, 3043–3054 (2005). CASPubMedPubMed Central Google Scholar
Inomata, K. et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell137, 1088–1099 (2009). CASPubMed Google Scholar
Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell124, 315–329 (2006). CASPubMed Google Scholar
Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature452, 492–496 (2008). ADSCASPubMedPubMed Central Google Scholar
Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol.8, 275–283 (2007). CAS Google Scholar
Flores, I. & Blasco, M. A. A p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS ONE4, e4934 (2009). ADSPubMedPubMed Central Google Scholar
Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). ADSCASPubMed Google Scholar
Khoo, C. M., Carrasco, D. R., Bosenberg, M. W., Paik, J. H. & Depinho, R. A. Ink4a/Arf tumor suppressor does not modulate the degenerative conditions or tumor spectrum of the telomerase-deficient mouse. Proc. Natl Acad. Sci. USA104, 3931–3936 (2007). ADSCASPubMedPubMed Central Google Scholar
Chambers, S. M. et al. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol.5, e201 (2007). PubMedPubMed Central Google Scholar
Donehower, L. A. & Lozano, G. 20 years studying p53 functions in genetically engineered mice. Nature Rev. Cancer9, 831–841 (2009). CAS Google Scholar
Matheu, A., Maraver, A. & Serrano, M. The Arf/p53 pathway in cancer and aging. Cancer Res.68, 6031–6034 (2008). CASPubMed Google Scholar
Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature448, 375–379 (2007). ADSCASPubMed Google Scholar
Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev.20, 16–21 (2006). CASPubMedPubMed Central Google Scholar
Serrano, M. & Blasco, M. A. Cancer and ageing: convergent and divergent mechanisms. Nature Rev. Mol. Cell Biol.8, 715–722 (2007). CAS Google Scholar
Begus-Nahrmann, Y. et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nature Genet.41, 1138–1143 (2009). CASPubMed Google Scholar
Leri, A. et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J.22, 131–139 (2003). CASPubMedPubMed Central Google Scholar
Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor. Nature Med.11, 1306–1313 (2005). CASPubMed Google Scholar
Finkel, T., Deng, C. X. & Mostoslavsky, R. Recent progress in the biology and physiology of sirtuins. Nature460, 587–591 (2009). ADSCASPubMedPubMed Central Google Scholar
Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature429, 417–423 (2004). ADSCASPubMed Google Scholar
St- Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell127, 397–408 (2006). In this paper, the authors demonstrate that PGC-1αis a strong positive regulator of the ROS defence system and that PGC-1αdeficiency leads to ROS-induced neurodegeneration. Google Scholar
Vianna, C. R. et al. Hypomorphic mutation of PGC-1β causes mitochondrial dysfunction and liver insulin resistance. Cell Metab.4, 453–464 (2006). CASPubMedPubMed Central Google Scholar
Vijg, J. Aging of the Genome: The Dual Role of DNA in Life and Death (Oxford Univ. Press, 2007). Google Scholar
Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell1, 113–126 (2007). CASPubMedPubMed Central Google Scholar
Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature431, 997–1002 (2004). ADSCASPubMed Google Scholar
Tomas- Loba, A. et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell135, 609–622 (2008). Google Scholar
Coviello- McLaughlin, G. M. & Prowse, K. R. Telomere length regulation during postnatal development and ageing in Mus spretus. Nucleic Acids Res.25, 3051–3058 (1997). Google Scholar
Flores, I. et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev.22, 654–667 (2008). CASPubMedPubMed Central Google Scholar
Armanios, M. et al. Short telomeres are sufficient to cause the degenerative defects associated with aging. Am. J. Hum. Genet.85, 823–832 (2009). CASPubMedPubMed Central Google Scholar
Hao, L. Y. et al. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell123, 1121–1131 (2005). CASPubMed Google Scholar
Martin, G. M. Genetic modulation of senescent phenotypes in Homo sapiens. Cell120, 523–532 (2005). CASPubMed Google Scholar