Brain function and chromatin plasticity (original) (raw)
Squire, L. R. Memory and Brain (Oxford Univ. Press, 1987). Google Scholar
Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev.23, 781–783 (2009). ArticleCAS Google Scholar
Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol.17, R233–R236 (2007). References 2 and 3 are interesting reviews on the meaning and potential mechanisms of epigenetic regulation. ArticleCASPubMed Google Scholar
Kramer, J. M. & van Bokhoven, H. Genetic and epigenetic defects in mental retardation. Int. J. Biochem. Cell Biol.41, 96–107 (2009). ArticleCASPubMed Google Scholar
Guan, Z. et al. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell111, 483–493 (2002). This paper presents an early mechanistic analysis of memory formation and the associated chromatin modifications. ArticleCASPubMed Google Scholar
Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet.23, 185–188 (1999). ArticleCASPubMed Google Scholar
Chen, R. Z., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genet.27, 327–331 (2001). ArticleCASPubMed Google Scholar
Guy, J., Hendrich, B., Holmes, M., Martin, J. E. & Bird, A. A mouse _Mecp2_-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genet.27, 322–326 (2001). ArticleCASPubMed Google Scholar
Luikenhuis, S., Giacometti, E., Beard, C. F. & Jaenisch, R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc. Natl Acad. Sci. USA101, 6033–6038 (2004). ArticleADSCASPubMedPubMed Central Google Scholar
Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science302, 885–889 (2003). ArticleADSCASPubMed Google Scholar
Martinowich, K. et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science302, 890–893 (2003). ArticleADSCASPubMed Google Scholar
Chahrour, M. et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science320, 1224–1229 (2008). This paper provides an interesting mechanistic analysis of the function of MECP2 in the hypothalamus. ArticleADSCASPubMedPubMed Central Google Scholar
Zhao, X. et al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl Acad. Sci. USA100, 6777–6782 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Martin Caballero, I., Hansen, J., Leaford, D., Pollard, S. & Hendrich, B. D. The methyl-CpG binding proteins Mecp2, Mbd2 and Kaiso are dispensable for mouse embryogenesis, but play a redundant function in neural differentiation. PLoS ONE4, e4315 (2009). ArticleADSPubMedPubMed CentralCAS Google Scholar
Feng, J. & Fan, G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int. Rev. Neurobiol.89, 67–84 (2009). ArticleCASPubMed Google Scholar
Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature445, 671–675 (2007). ArticleCASPubMed Google Scholar
Okada, Y., Yamagata, K., Hong, K., Wakayama, T. & Zhang, Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature463, 554–558 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45 . Cell135, 1201–1212 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324, 929–930 (2009). This study identifies an intriguing new nucleotide modification in the brain. ArticleADSCASPubMedPubMed Central Google Scholar
Flavell, S. W. & Greenberg, M. E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci.31, 563–590 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science294, 1030–1038 (2001). ArticleADSCASPubMed Google Scholar
Tsankova, N. M., Kumar, A. & Nestler, E. J. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci.24, 5603–5610 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kumar, A. et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron48, 303–314 (2005). ArticleCASPubMed Google Scholar
Levenson, J. M. et al. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem.279, 40545–40559 (2004). ArticleCASPubMed Google Scholar
Renthal, W. et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron56, 517–529 (2007). ArticleCASPubMed Google Scholar
Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M. & Tsai, L. H. Recovery of learning and memory is associated with chromatin remodelling. Nature447, 178–182 (2007). ArticleADSCASPubMed Google Scholar
Ptak, C. & Petronis, A. Epigenetics and complex disease: from etiology to new therapeutics. Annu. Rev. Pharmacol. Toxicol.48, 257–276 (2008). ArticleCASPubMed Google Scholar
Alarcon, J. M. et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration. Neuron42, 947–959 (2004). ArticleCASPubMed Google Scholar
Korzus, E., Rosenfeld, M. G. & Mayford, M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron42, 961–972 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schaefer, A. et al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron64, 678–691 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev.20, 1123–1136 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron63, 600–613 (2009). ArticleCASPubMed Google Scholar
Katan-Khaykovich, Y. & Struhl, K. Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev.16, 743–752 (2002). ArticleCASPubMedPubMed Central Google Scholar
Radman-Livaja, M., Liu, C. L., Friedman, N., Schreiber, S. L. & Rando, O. J. Replication and active demethylation represent partially overlapping mechanisms for erasure of H3K4me3 in budding yeast. PLoS Genet.6, e1000837 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Mohn, F. et al. Lineage-specific Polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell30, 755–766 (2008). This paper provides an insightful analysis of the changes in DNA and histone H3 methylation at promoter regions during cell-fate determination and early differentiation of neuronal progenitors. ArticleCASPubMed Google Scholar
Wong, A. H., Gottesman, I. I. & Petronis, A. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum. Mol. Genet.14, R11–R18 (2005). ArticleCASPubMed Google Scholar
Gartner, K. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab. Anim.24, 71–77 (1990). ArticleCASPubMed Google Scholar
Tamashiro, K. L. et al. Phenotype of cloned mice: development, behavior, and physiology. Exp. Biol. Med.228, 1193–1200 (2003). ArticleCAS Google Scholar
Weksberg, R. et al. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith–Wiedemann syndrome. Hum. Mol. Genet.11, 1317–1325 (2002). ArticleCASPubMed Google Scholar
Raj, A., Rifkin, S. A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature463, 913–918 (2010). This paper provides an interesting analysis of variability in the gene regulatory networks of genetically identical animals. ArticleADSCASPubMedPubMed Central Google Scholar
Francis, D. D., Szegda, K., Campbell, G., Martin, W. D. & Insel, T. R. Epigenetic sources of behavioral differences in mice. Nature Neurosci.6, 445–446 (2003). This study is a remarkable demonstration of the effect of perinatal environment on behavioural traits. ArticleCASPubMed Google Scholar
McMillen, I. C. & Robinson, J. S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev.85, 571–633 (2005). ArticleCASPubMed Google Scholar
Waterland, R. A. & Jirtle, R. L. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol.23, 5293–5300 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wolff, G. L., Kodell, R. L., Moore, S. R. & Cooney, C. A. Maternal epigenetics and methyl supplements affect agouti gene expression in _A_vy/a mice. FASEB J.12, 949–957 (1998). ArticleCASPubMed Google Scholar
Waterland, R. A. & Jirtle, R. L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition20, 63–68 (2004). ArticleCASPubMed Google Scholar
Denenberg, V. H., Brumaghim, J. T., Haltmeyer, G. C. & Zarrow, M. X. Increased adrenocortical activity in the neonatal rat following handling. Endocrinology81, 1047–1052 (1967). ArticleCASPubMed Google Scholar
Meaney, M. J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci.24, 1161–1192 (2001). ArticleCASPubMed Google Scholar
Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci.7, 847–854 (2004). ArticleCASPubMed Google Scholar
Murgatroyd, C. et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neurosci.12, 1559–1566 (2009). ArticleCASPubMed Google Scholar
Cirulli, F. et al. Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci. Biobehav. Rev.33, 573–585 (2009). ArticleCASPubMed Google Scholar
Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet.8, 253–262 (2007). ArticleCASPubMed Google Scholar
Keverne, E. B. Genomic imprinting and the evolution of sex differences in mammalian reproductive strategies. Adv. Genet.59, 217–243 (2007). ArticleCASPubMed Google Scholar
Wilkins, J. F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nature Rev. Genet.4, 359–368 (2003). ArticleCASPubMed Google Scholar
DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell64, 849–859 (1991). ArticleCASPubMed Google Scholar
Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature349, 84–87 (1991). ArticleADSCASPubMed Google Scholar
Fowden, A. L., Sibley, C., Reik, W. & Constancia, M. Imprinted genes, placental development and fetal growth. Horm. Res.65 (suppl. 3), 50–58 (2006). CASPubMed Google Scholar
Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet.2, 21–32 (2001). ArticleCASPubMed Google Scholar
Davies, W. et al. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nature Genet.37, 625–629 (2005). ArticleCASPubMed Google Scholar
Raefski, A. S. & O'Neill, M. J. Identification of a cluster of X-linked imprinted genes in mice. Nature Genet.37, 620–624 (2005). ArticleCASPubMed Google Scholar
Wilkinson, L. S., Davies, W. & Isles, A. R. Genomic imprinting effects on brain development and function. Nature Rev. Neurosci.8, 832–843 (2007). ArticleCAS Google Scholar
Kozlov, S. V. et al. The imprinted gene Magel2 regulates normal circadian output. Nature Genet.39, 1266–1272 (2007). ArticleCASPubMed Google Scholar
Richards, E. J. Inherited epigenetic variation — revisiting soft inheritance. Nature Rev. Genet.7, 395–401 (2006). ArticleCASPubMed Google Scholar
Lim, A. L. & Ferguson-Smith, A. C. Genomic imprinting effects in a compromised in utero environment: implications for a healthy pregnancy. Semin. Cell Dev. Biol.21, 201–208 (2010). ArticleCASPubMed Google Scholar
Patisaul, H. B. & Adewale, H. B. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front. Behav. Neurosci.3, 10 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Weaver, I. C. et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J. Neurosci.25, 11045–11054 (2005). ArticleCASPubMedPubMed Central Google Scholar
Whitelaw, N. C. & Whitelaw, E. Transgenerational epigenetic inheritance in health and disease. Curr. Opin. Genet. Dev.18, 273–279 (2008). This insightful review discusses the phenomenon of transgenerational epigenetic inheritance. ArticleCASPubMed Google Scholar
Agalioti, T., Chen, G. & Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene. Cell111, 381–392 (2002). ArticleCASPubMed Google Scholar
Matzke, M., Kanno, T., Huettel, B., Daxinger, L. & Matzke, A. J. RNA-directed DNA methylation and Pol IVb in Arabidopsis . Cold Spring Harb. Symp. Quant. Biol.71, 449–459 (2006). ArticleCASPubMed Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). ArticleCASPubMedPubMed Central Google Scholar
Francis, N. J., Follmer, N. E., Simon, M. D., Aghia, G. & Butler, J. D. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro . Cell137, 110–122 (2009). This study is a unique demonstration of the retention of a chromatin modification throughout cell division. ArticleCASPubMedPubMed Central Google Scholar
Creppe, C. et al. Elongator controls the migration and differentiation of cortical neurons through acetylation of α-tubulin. Cell136, 551–564 (2009). ArticleCASPubMed Google Scholar
Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74, 481–514 (2005). ArticleCASPubMed Google Scholar
Gehring, M., Reik, W. & Henikoff, S. DNA demethylation by DNA repair. Trends Genet.25, 82–90 (2009). ArticleCASPubMed Google Scholar
Jost, J. P. et al. 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation. Nucleic Acids Res.29, 4452–4461 (2001). ArticleCASPubMedPubMed Central Google Scholar
Metivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature452, 45–50 (2008). ArticleADSCASPubMed Google Scholar
Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature463, 1101–1105 (2010). ArticleADSCASPubMedPubMed Central Google Scholar
Allis, C. D. et al. New nomenclature for chromatin-modifying enzymes. Cell131, 633–636 (2007). ArticleCASPubMed Google Scholar
Campos, E. I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet.43, 559–599 (2009). ArticleCASPubMed Google Scholar
Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell Biol.8, 983–994 (2007). References 96 and 97 are insightful reviews on the functional significance of individual, or patterns of, histone modifications, with a debate on a revised histone-code hypothesis. ArticleCAS Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleADSCASPubMed Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007). ArticleCASPubMed Google Scholar
Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genet.40, 897–903 (2008). ArticleCASPubMed Google Scholar